Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 32(5): e2600, 2022 07.
Article in English | MEDLINE | ID: mdl-35343018

ABSTRACT

Novel approaches to quantifying density and distributions could help biologists adaptively manage wildlife populations, particularly if methods are accurate, consistent, cost-effective, rapid, and sensitive to change. Such approaches may also improve research on interactions between density and processes of interest, such as disease transmission across multiple populations. We assess how satellite imagery, unmanned aerial system (UAS) imagery, and Global Positioning System (GPS) collar data vary in characterizing elk density, distribution, and count patterns across times with and without supplemental feeding at the National Elk Refuge (NER) in the US state of Wyoming. We also present the first comparison of satellite imagery data with traditional counts for ungulates in a temperate system. We further evaluate seven different aggregation metrics to identify the most consistent and sensitive metrics for comparing density and distribution across time and populations. All three data sources detected higher densities and aggregation locations of elk during supplemental feeding than non-feeding at the NER. Kernel density estimates (KDEs), KDE polygon areas, and the first quantile of interelk distances detected differences with the highest sensitivity and were most highly correlated across data sources. Both UAS and satellite imagery provide snapshots of density and distribution patterns of most animals in the area at lower cost than GPS collars. While satellite-based counts were lower than traditional counts, aggregation metrics matched those from UAS and GPS data sources when animals appeared in high contrast to the landscape, including brown elk against new snow in open areas. UAS counts of elk were similar to traditional ground-based counts on feed grounds and are the best data source for assessing changes in small spatial extents. Satellite, UAS, or GPS data can provide appropriate data for assessing density and changes in density from adaptive management actions. For the NER, where high elk densities are beneath controlled airspace, GPS collar data will be most useful for evaluating how management actions, including changes in the dates of supplemental feeding, influence elk density and aggregation across large spatial extents. Using consistent and sensitive measures of density may improve research on the drivers and effects of density within and across a wide range of species.


Subject(s)
Deer , Animals , Animals, Wild , Geographic Information Systems , Satellite Imagery , Snow
2.
Ecol Appl ; 17(6): 1656-65, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17913130

ABSTRACT

Fire is a natural part of most forest ecosystems in the western United States, but its effects on nonnative plant invasion have only recently been studied. Also, forest managers are engaging in fuel reduction projects to lessen fire severity, often without considering potential negative ecological consequences such as nonnative plant species introductions. Increased availability of light, nutrients, and bare ground have all been associated with high-severity fires and fuel treatments and are known to aid in the establishment of nonnative plant species. We use vegetation and environmental data collected after wildfires at seven sites in coniferous forests in the western United States to study responses of nonnative plants to wildfire. We compared burned vs. unburned plots and plots treated with mechanical thinning and/or prescribed burning vs. untreated plots for nonnative plant species richness and cover and used correlation analyses to infer the effect of abiotic site conditions on invasibility. Wildfire was responsible for significant increases in nonnative species richness and cover, and a significant decrease in native cover. Mechanical thinning and prescribed fire fuel treatments were associated with significant changes in plant species composition at some sites. Treatment effects across sites were minimal and inconclusive due to significant site and site x treatment interaction effects caused by variation between sites including differences in treatment and fire severities and initial conditions (e.g., nonnative species sources). We used canonical correspondence analysis (CCA) to determine what combinations of environmental variables best explained patterns of nonnative plant species richness and cover. Variables related to fire severity, soil nutrients, and elevation explained most of the variation in species composition. Nonnative species were generally associated with sites with higher fire severity, elevation, percentage of bare ground, and lower soil nutrient levels and lower canopy cover. Early assessments of postfire stand conditions can guide rapid responses to nonnative plant invasions.


Subject(s)
Fires , Plant Development , Tracheophyta/growth & development , Trees/growth & development , Ecosystem , Geography , Population Dynamics , United States
3.
Environ Monit Assess ; 132(1-3): 235-52, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17279456

ABSTRACT

Land managers need cost-effective and informative tools for non-native plant species management. Many local, state, and federal agencies adopted mapping systems designed to collect comparable data for the early detection and monitoring of non-native species. We compared mapping information to statistically rigorous, plot-based methods to better understand the benefits and compatibility of the two techniques. Mapping non-native species locations provided a species list, associated species distributions, and infested area for subjectively selected survey sites. The value of this information may be compromised by crude estimates of cover and incomplete or biased estimations of species distributions. Incorporating plot-based assessments guided by a stratified-random sample design provided a less biased description of non-native species distributions and increased the comparability of data over time and across regions for the inventory, monitoring, and management of non-native and native plant species.


Subject(s)
Environment , Maps as Topic , Plants/classification , Geography , Time Factors
4.
Ecology ; 87(12): 3186-99, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17249242

ABSTRACT

Spatial heterogeneity may have differential effects on the distribution of native and nonnative plant species richness. We examined the effects of spatial heterogeneity on native and nonnative plant species richness distributions in the central part of Rocky Mountain National Park, Colorado, USA. Spatial heterogeneity around vegetation plots was characterized using landscape metrics, environmental/topographic variables (slope, aspect, elevation, and distance from stream or river), and soil variables (nitrogen, clay, and sand). The landscape metrics represented five components of landscape heterogeneity and were measured at four spatial extents (within varying radii of 120, 240, 480, and 960 m) using the FRAGSTATS landscape pattern analysis program. Akaike's Information Criterion adjusted for small sample size (AICc) was used to select the best models from a set of multiple linear regression models developed for native and nonnative plant species richness at four spatial extents and three levels of ecological hierarchy (i.e., landscape, land cover, and community). Both native and nonnative plant species richness were positively correlated with edge density, Simpson's diversity index and interspersion/juxtaposition index, and were negatively correlated with mean patch size. The amount of variation explained at four spatial extents and three hierarchical levels ranged from 30% to 70%. At the landscape level, the best models explained 43% of the variation in native plant species richness and 70% of the variation in nonnative plant species richness (240-m extent). In general, the amount of variation explained was always higher for nonnative plant species richness, and the inclusion of landscape metrics always significantly improved the models. The best models explained 66% of the variation in nonnative plant species richness for both the conifer land cover type and lodgepole pine community. The relative influence of the components of spatial heterogeneity differed for native and nonnative plant species richness and varied with the spatial extent of analysis and levels of ecological hierarchy. The study offers an approach to quantify spatial heterogeneity to improve models of plant biodiversity. The results demonstrate that ecologists must recognize the importance of spatial heterogeneity in managing native and nonnative plant species.


Subject(s)
Biodiversity , Geography , Plants , Colorado
5.
Environ Manage ; 29(4): 566-77, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12071506

ABSTRACT

Basic information on where nonnative plant species have successfully invaded is lacking. We assessed the vulnerability of 22 vegetation types (25 sets of four plots in nine study areas) to nonnative plant invasions in the north-central United States. In general, habitats with high native species richness were more heavily invaded than species-poor habitats, low-elevation areas were more invaded than high-elevation areas, and riparian zones were more invaded than nearby upland sites. For the 100 1000-m2 plots (across all vegetation types), 50% of the variation in nonnative species richness was explained by longitude, latitude, native plant species richness, soil total percentage nitrogen, and mean maximum July temperature (n = 100 plots; P < 0.001). At the vegetation-type scale (n = 25 sets of four 1000-m2 plots/type), 64% of the variation in nonnative species richness was explained by native plant species richness, elevation, and October to June precipitation (P < 0.001). The foliar cover of nonnative species (log) was strongly positively correlated with the nonnative species richness at the plot scale (r = 0.77, P < 0.001) and vegetation-type scale (r = 0.83, P < 0.001). We concluded that, at the vegetation-type and regional scales in the north-central United States, (1) vegetation types rich in native species are often highly vulnerable to invasion by nonnative plant species; (2) where several nonnative species become established, nonnative species cover can substantially increase; (3) the attributes that maintain high native plant species richness (high light, water, nitrogen, and temperatures) also help maintain nonnative plant species richness; and (4) more care must be taken to preserve native species diversity in highly vulnerable habitats.


Subject(s)
Conservation of Natural Resources , Plants , Altitude , Ecosystem , Environment , Forecasting , Population Dynamics , Risk Assessment , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...