Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 22(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36502127

ABSTRACT

The abbreviated injury score (AIS) is commonly used as a grading system for inhalation injuries. While inhalation injury grades have inconsistently been shown to correlate positively with the time mechanical ventilation is needed, grading is subjective and relies heavily on the clinicians' experience and expertise. Additionally, no correlation has been shown between these patients' inhalation injury grades and outcomes. In this paper, we propose a novel inhalation injury grading method which uses deep learning algorithms in bronchoscopy images to determine the injury grade from the carbonaceous deposits, blistering, and fibrin casts in the bronchoscopy images. The proposed method adopts transfer learning and data augmentation concepts to enhance the accuracy performance to avoid overfitting. We tested our proposed model on the bronchoscopy images acquired from eighteen patients who had suffered inhalation injuries, with the degree of severity 1, 2, 3, 4, 5, or 6. As performance metrics, we consider accuracy, sensitivity, specificity, F-1 score, and precision. Experimental results show that our proposed method, with both transfer learning and data augmentation components, provides an overall 86.11% accuracy. Moreover, the experimental results also show that the performance of the proposed method outperforms the method without transfer learning or data augmentation.


Subject(s)
Bronchoscopy , Respiration, Artificial , Humans , Machine Learning
2.
IEEE J Transl Eng Health Med ; 9: 3800110, 2021.
Article in English | MEDLINE | ID: mdl-34786216

ABSTRACT

OBJECTIVE: Cataract, which is the clouding of the crystalline lens, is the most prevalent eye disease accounting for 51% of all eye diseases in the U.S. Cataract is a progressive disease, and its early detection is critical for preventing blindness. In this paper, an efficient approach to identify cataract disease by adopting luminance features using a smartphone is proposed. METHODS: Initially, eye images captured by a smartphone were cropped to extract the lens, and the images were preprocessed to remove irrelevant background and noise by utilizing median filter and watershed transformation. Then, a novel luminance transformation from pixel brightness algorithm was introduced to extract lens image features. The luminance and texture features of different types of cataract disease images could be obtained accurately in this stage. Finally, by adopting support vector machines (SVM) as the classification method, cataract eyes were identified. RESULTS: From all the images that we fed into our system, our method could diagnose diseased eyes with 96.6% accuracy, 93.4% specificity, and 93.75% sensitivity. CONCLUSION: The proposed method provides an affordable, rapid, easy-to-use, and versatile method for detecting cataracts by using smartphones without the use of bulky and expensive imaging devices. This methodcan be used for bedside telemedicine applications or in remote areas that have medical shortages. Previous smartphone-based cataract detection methods include texture feature analysis with 95 % accuracy, Gray Level Co-occurrence Matrix (GLCM) method with 89% accuracy, red reflex measurement method, and RGB color feature extraction method using cascade classifier with 90% accuracy. The accuracy of cataract detection in these studies is subject to changes in smartphone models and/or environmental conditions. However, our novel luminance-based method copes with different smartphone camera sensors and chroma variations, while operating independently from sensors' color characteristics and changes in distances and camera angle. Clinical and Translational Impact-This study is an early/pre-clinical research proposing a novel luminance-based method of detecting cataract using smartphones for remote/at-home monitoring and telemedicine application.


Subject(s)
Cataract , Telemedicine , Algorithms , Cataract/diagnosis , Humans , Smartphone , Support Vector Machine
3.
IEEE J Biomed Health Inform ; 25(2): 602-612, 2021 02.
Article in English | MEDLINE | ID: mdl-32750916

ABSTRACT

As a reliable indicator for individual's healthiness conditions, heart rate (HR) has been widely considered and used. Imaging photoplethysmography (iPPG) is recently highlighted as a promising HR measurement method, due to its non-contact characteristics, by extracting the HR from facial video recordings. In this study, we propose a camera-based HR monitoring technique that estimates HR information from iPPG signals extracted from a video sequence. Videos were recorded using a smartphone or a laptop camera. We adopted the plane-orthogonal-to-skin (POS) method to compute iPPG. The proposed method is evaluated by applying it to extract HR of 9 subjects at rest and during two motion conditions (lateral and frontal) while they were performing several respiratory maneuvers-spontaneous, metronome, and forced. Automatic face detection algorithms were implemented in the proposed method. Our experimental results show that mean values of HR have 0.56% error and 99.4% accuracy when compared to HR calculated from the gold-standard electrocardiography (ECG) reference in diverse conditions of motions and respiratory maneuvers.


Subject(s)
Photoplethysmography , Smartphone , Algorithms , Heart Rate , Humans , Monitoring, Physiologic
4.
Sensors (Basel) ; 19(21)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694281

ABSTRACT

Lateral flow assay (LFA) technology has recently received interest in the biochemical field since it is simple, low-cost, and rapid, while conventional laboratory test procedures are complicated, expensive, and time-consuming. In this paper, we propose a robust smartphone-based analyte detection method that estimates the amount of analyte on an LFA strip using a smartphone camera. The proposed method can maintain high estimation accuracy under various illumination conditions without additional devices, unlike conventional methods. The robustness and simplicity of the proposed method are enabled by novel image processing and machine learning techniques. For the performance analysis, we applied the proposed method to LFA strips where the target analyte is albumin protein of human serum. We use two sets of training LFA strips and one set of testing LFA strips. Here, each set consists of five strips having different quantities of albumin-10 femtograms, 100 femtograms, 1 picogram, 10 picograms, and 100 picograms. A linear regression analysis approximates the analyte quantity, and then machine learning classifier, support vector machine (SVM), which is trained by the regression results, classifies the analyte quantity on the LFA strip in an optimal way. Experimental results show that the proposed smartphone application can detect the quantity of albumin protein on a test LFA set with 98% accuracy, on average, in real time.

5.
Sensors (Basel) ; 19(15)2019 Jul 27.
Article in English | MEDLINE | ID: mdl-31357633

ABSTRACT

In this paper, we propose a novel strep throat detection method using a smartphone with an add-on gadget. Our smartphone-based strep throat detection method is based on the use of camera and flashlight embedded in a smartphone. The proposed algorithm acquires throat image using a smartphone with a gadget, processes the acquired images using color transformation and color correction algorithms, and finally classifies streptococcal pharyngitis (or strep) throat from healthy throat using machine learning techniques. Our developed gadget was designed to minimize the reflection of light entering the camera sensor. The scope of this paper is confined to binary classification between strep and healthy throats. Specifically, we adopted k-fold validation technique for classification, which finds the best decision boundary from training and validation sets and applies the acquired best decision boundary to the test sets. Experimental results show that our proposed detection method detects strep throats with 93.75% accuracy, 88% specificity, and 87.5% sensitivity on average.


Subject(s)
Pharyngitis/diagnostic imaging , Pharynx/diagnostic imaging , Streptococcaceae/isolation & purification , Streptococcal Infections/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Pharyngitis/microbiology , Pharynx/microbiology , Smartphone , Streptococcaceae/pathogenicity , Streptococcal Infections/microbiology
6.
Sensors (Basel) ; 19(13)2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31248022

ABSTRACT

Photoplethysmography (PPG) is a commonly used in determining heart rate and oxygen saturation (SpO2). However, PPG measurements and its accuracy are heavily affected by the measurement procedure and environmental factors such as light, temperature, and medium. In this paper, we analyzed the effects of different mediums (water vs. air) and temperature on the PPG signal quality and heart rate estimation. To evaluate the accuracy, we compared our measurement output with a gold-standard PPG device (NeXus-10 MKII). The experimental results show that the average PPG signal amplitude values of the underwater environment decreased considerably (22% decrease) compared to PPG signals of dry environments, and the heart rate measurement deviated 7% (5 beats per minute on average. The experimental results also show that the signal to noise ratio (SNR) and signal amplitude decrease as temperature decreases. Paired t-test which compares amplitude and heart rate values between the underwater and dry environments was performed and the test results show statistically significant differences for both amplitude and heart rate values (p < 0.05). Moreover, experimental results indicate that decreasing the temperature from 45 °C to 5 °C or changing the medium from air to water decreases PPG signal quality, (e.g., PPG signal amplitude decreases from 0.560 to 0.112). The heart rate is estimated within 5.06 bpm deviation at 18 °C in underwater environment, while estimation accuracy decreases as temperature goes down.


Subject(s)
Heart Rate/physiology , Monitoring, Physiologic , Photoplethysmography/methods , Smartphone , Adult , Aged , Aged, 80 and over , Algorithms , Female , Healthy Volunteers , Humans , Male , Middle Aged , Signal Processing, Computer-Assisted/instrumentation , Signal-To-Noise Ratio
7.
PLoS One ; 14(6): e0218248, 2019.
Article in English | MEDLINE | ID: mdl-31216314

ABSTRACT

The advent of smartphones has advanced the use of embedded sensors to acquire various physiological information. For example, smartphone camera sensors and accelerometers can provide heart rhythm signals to the subjects, while microphones can give respiratory signals. However, the acquired smartphone-based physiological signals are more vulnerable to motion and noise artifacts (MNAs) compared to using medical devices, since subjects need to hold the smartphone with proper contact to the smartphone camera and lens stably and tightly for a duration of time without any movement in the hand or finger. This results in more MNA than traditional methods, such as placing a finger inside a tightly enclosed pulse oximeter to get PPG signals, which provides stable contact between the sensor and the subject's finger. Moreover, a smartphone lens does not block ambient light in an effective way, while pulse oximeters are designed to block the ambient light effectively. In this paper, we propose a novel diversity method for smartphone signals that reduces the effect of MNAs during heart rhythm signal detection by 1) acquiring two heterogeneous signals from a color intensity signal and a fingertip movement signal, and 2) selecting the less MNA-corrupted signal of the two signals. The proposed method has advantages in that 1) diversity gain can be obtained from the two heterogeneous signals when one signal is clean while the other signal is corrupted, and 2) acquisition of the two heterogeneous signals does not double the acquisition procedure but maintains a single acquisition procedure, since two heterogeneous signals can be obtained from a single smartphone camera recording. In our diversity method, we propose to choose the better signal based on the signal quality indices (SQIs), i.e., standard deviation of instantaneous heart rate (STD-HR), root mean square of the successive differences of peak-to-peak time intervals (RMSSD-T), and standard deviation of peak values (STD-PV). As a performance metric evaluating the proposed diversity method, the ratio of usable period is considered. Experimental results show that our diversity method increases the usable period 19.53% and 6.25% compared to the color intensity or the fingertip movement signals only, respectively.


Subject(s)
Heart Rate/physiology , Heart/physiology , Monitoring, Physiologic , Smartphone , Algorithms , Fingers/physiology , Humans , Motion , Oximetry/methods , Signal Processing, Computer-Assisted , Support Vector Machine
8.
IEEE Access ; 6: 60498-60512, 2018.
Article in English | MEDLINE | ID: mdl-31263653

ABSTRACT

Photoplethysmography (PPG) is a technique to detect blood volume changes in an optical way. Representative PPG applications are the measurements of oxygen saturation, heart rate, and respiratory rate. However, PPG signals are sensitive to motion and noise artifacts (MNAs) especially when they are obtained from smartphone cameras. Moreover, PPG signals are different among users and each individual's PPG signal has a unique characteristic. Hence, an effective MNA detection and reduction method for smartphone PPG signals, which adapts itself to each user in a personalized way, is highly demanded. Here, a concept of the probabilistic neural network (PNN) is introduced to be used with the proposed extracted parameters. The signal amplitude, standard deviation of peak to peak time intervals and amplitudes, along with the mean of moving standard deviation, signal slope changes, and the optimal autoregressive (AR) model order are proposed for effective MNA detection. Accordingly, the performance of the proposed personalized algorithm is compared with conventional MNA detection algorithms. As performance metrics, we considered accuracy, sensitivity, and specificity. The results show that the overall performance of the personalized MNA detection is enhanced compared to the generalized algorithm. The average values of the accuracy, sensitivity and specificity of the personalized one are 98.07%, 92.6%, and 99.78%, respectively, while these are 89.92%, 84.21%, and 93.63% for the general one.

9.
IEEE J Emerg Sel Top Circuits Syst ; 8(2): 230-239, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30687580

ABSTRACT

We have recently found that our previously-developed atrial fibrillation (AF) detection algorithm for smartphones can give false positives when subjects' fingers or hands move, as we rely on proper finger placement over the smartphone camera to collect the signal of interest. Specifically, smartphone camera pulsatile signals that are obtained from normal sinus rhythm (NSR) subjects but are corrupted by motion and noise artifacts (MNAs) are frequently detected as AF. AF and motion-corrupted episodes have the similar characteristic that pulse-to-pulse intervals (PPIs) are irregular. We have developed an MNA-resilient smartphone-based AF detection algorithm that first discriminates and eliminates MNA-corrupted episodes in smartphone camera recordings, and then detects AF in MNA-free recordings. We found that MNA-corrupted episodes have highly-varying pulse slope, large turning point ratio, or large kurtosis values in smartphone signals compared to MNA-free AF and NSR episodes. We first use these three metrics for MNA discrimination and exclusion. Then, AF is detected in MNA-free signals using our previous algorithm. The capability to discriminate MNAs and AFs separately in smartphone signals increases the specificity of AF detection. To evaluate the performance of the proposed MNA-resilient AF algorithm, 99 subjects, including 88 study participants with AF at baseline and in NSR after electrical cardioversion as well as 11 participants with MNA-corrupted NSR, were recruited. Using iPhone 4S, 5S, and 6S models, we collected 2-minute pulsatile time series from each subject. The clinical results show that the accuracy, sensitivity and specificity of the proposed AF algorithm are 0.97, 0.98, 0.97, respectively, which are higher than those of the previous AF algorithm.

10.
Sensors (Basel) ; 17(2)2017 Feb 12.
Article in English | MEDLINE | ID: mdl-28208678

ABSTRACT

We hypothesize that our smartphone-based fingertip image-based heart rate detection methods reliably detect the heart rhythm and rate of subjects. We propose fingertip curve line movement-based and fingertip image intensity-based detection methods, which both use the movement of successive fingertip images obtained from smartphone cameras. To investigate the performance of the proposed methods, heart rhythm and rate of the proposed methods are compared to those of the conventional method, which is based on average image pixel intensity. Using a smartphone, we collected 120 s pulsatile time series from each recruited subject. The results show that the proposed fingertip curve line movement-based method detects heart rate with a maximum deviation of 0.0832 Hz and 0.124 Hz using time- and frequency-domain based estimation, respectively, compared to the conventional method. Moreover, another proposed fingertip image intensity-based method detects heart rate with a maximum deviation of 0.125 Hz and 0.03 Hz using time- and frequency-based estimation, respectively.


Subject(s)
Fingers , Heart Rate , Humans , Smartphone
11.
IEEE J Biomed Health Inform ; 21(5): 1242-1253, 2017 09.
Article in English | MEDLINE | ID: mdl-28113791

ABSTRACT

Motion and noise artifacts (MNAs) impose limits on the usability of the photoplethysmogram (PPG), particularly in the context of ambulatory monitoring. MNAs can distort PPG, causing erroneous estimation of physiological parameters such as heart rate (HR) and arterial oxygen saturation (SpO2). In this study, we present a novel approach, "TifMA," based on using the time-frequency spectrum of PPG to first detect the MNA-corrupted data and next discard the nonusable part of the corrupted data. The term "nonusable" refers to segments of PPG data from which the HR signal cannot be recovered accurately. Two sequential classification procedures were included in the TifMA algorithm. The first classifier distinguishes between MNA-corrupted and MNA-free PPG data. Once a segment of data is deemed MNA-corrupted, the next classifier determines whether the HR can be recovered from the corrupted segment or not. A support vector machine (SVM) classifier was used to build a decision boundary for the first classification task using data segments from a training dataset. Features from time-frequency spectra of PPG were extracted to build the detection model. Five datasets were considered for evaluating TifMA performance: (1) and (2) were laboratory-controlled PPG recordings from forehead and finger pulse oximeter sensors with subjects making random movements, (3) and (4) were actual patient PPG recordings from UMass Memorial Medical Center with random free movements and (5) was a laboratory-controlled PPG recording dataset measured at the forehead while the subjects ran on a treadmill. The first dataset was used to analyze the noise sensitivity of the algorithm. Datasets 2-4 were used to evaluate the MNA detection phase of the algorithm. The results from the first phase of the algorithm (MNA detection) were compared to results from three existing MNA detection algorithms: the Hjorth, kurtosis-Shannon entropy, and time-domain variability-SVM approaches. This last is an approach recently developed in our laboratory. The proposed TifMA algorithm consistently provided higher detection rates than the other three methods, with accuracies greater than 95% for all data. Moreover, our algorithm was able to pinpoint the start and end times of the MNA with an error of less than 1 s in duration, whereas the next-best algorithm had a detection error of more than 2.2 s. The final, most challenging, dataset was collected to verify the performance of the algorithm in discriminating between corrupted data that were usable for accurate HR estimations and data that were nonusable. It was found that on average 48% of the data segments were found to have MNA, and of these, 38% could be used to provide reliable HR estimation.


Subject(s)
Algorithms , Heart Rate/physiology , Photoplethysmography/methods , Signal Processing, Computer-Assisted , Adult , Artifacts , Female , Humans , Male , Middle Aged , Movement/physiology , Young Adult
12.
J Cardiovasc Electrophysiol ; 27(1): 51-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26391728

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is a common and dangerous rhythm abnormality. Smartphones are increasingly used for mobile health applications by older patients at risk for AF and may be useful for AF screening. OBJECTIVES: To test whether an enhanced smartphone app for AF detection can discriminate between sinus rhythm (SR), AF, premature atrial contractions (PACs), and premature ventricular contractions (PVCs). METHODS: We analyzed two hundred and nineteen 2-minute pulse recordings from 121 participants with AF (n = 98), PACs (n = 15), or PVCs (n = 15) using an iPhone 4S. We obtained pulsatile time series recordings in 91 participants after successful cardioversion to sinus rhythm from preexisting AF. The PULSE-SMART app conducted pulse analysis using 3 methods (Root Mean Square of Successive RR Differences; Shannon Entropy; Poincare plot). We examined the sensitivity, specificity, and predictive accuracy of the app for AF, PAC, and PVC discrimination from sinus rhythm using the 12-lead EKG or 3-lead telemetry as the gold standard. We also administered a brief usability questionnaire to a subgroup (n = 65) of app users. RESULTS: The smartphone-based app demonstrated excellent sensitivity (0.970), specificity (0.935), and accuracy (0.951) for real-time identification of an irregular pulse during AF. The app also showed good accuracy for PAC (0.955) and PVC discrimination (0.960). The vast majority of surveyed app users (83%) reported that it was "useful" and "not complex" to use. CONCLUSION: A smartphone app can accurately discriminate pulse recordings during AF from sinus rhythm, PACs, and PVCs.


Subject(s)
Atrial Fibrillation/diagnosis , Atrial Premature Complexes/diagnosis , Heart Rate , Mobile Applications , Photoplethysmography/instrumentation , Pulse , Smartphone , Telemetry/instrumentation , Ventricular Premature Complexes/diagnosis , Aged , Algorithms , Atrial Fibrillation/physiopathology , Atrial Premature Complexes/physiopathology , Attitude to Computers , Diagnosis, Differential , Electrocardiography , Female , Humans , Male , Middle Aged , Patient Satisfaction , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , Signal Processing, Computer-Assisted , Surveys and Questionnaires , Ventricular Premature Complexes/physiopathology
13.
IEEE J Biomed Health Inform ; 19(3): 815-24, 2015 May.
Article in English | MEDLINE | ID: mdl-25838530

ABSTRACT

We hypothesize that our smartphone-based arrhythmia discrimination algorithm with data acquisition approach reliably differentiates between normal sinus rhythm (NSR), atrial fibrillation (AF), premature ventricular contractions (PVCs) and premature atrial contraction (PACs) in a diverse group of patients having these common arrhythmias. We combine root mean square of successive RR differences and Shannon entropy with Poincare plot (or turning point ratio method) and pulse rise and fall times to increase the sensitivity of AF discrimination and add new capabilities of PVC and PAC identification. To investigate the capability of the smartphone-based algorithm for arrhythmia discrimination, 99 subjects, including 88 study participants with AF at baseline and in NSR after electrical cardioversion, as well as seven participants with PACs and four with PVCs were recruited. Using a smartphone, we collected 2-min pulsatile time series from each recruited subject. This clinical application results show that the proposed method detects NSR with specificity of 0.9886, and discriminates PVCs and PACs from AF with sensitivities of 0.9684 and 0.9783, respectively.


Subject(s)
Arrhythmias, Cardiac/classification , Cell Phone , Mobile Applications , Signal Processing, Computer-Assisted , Algorithms , Arrhythmias, Cardiac/physiopathology , Heart Rate/physiology , Humans , Sensitivity and Specificity
14.
Ann Biomed Eng ; 42(11): 2238-50, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25092422

ABSTRACT

Motion and noise artifacts (MNA) are a serious obstacle in utilizing photoplethysmogram (PPG) signals for real-time monitoring of vital signs. We present a MNA detection method which can provide a clean vs. corrupted decision on each successive PPG segment. For motion artifact detection, we compute four time-domain parameters: (1) standard deviation of peak-to-peak intervals (2) standard deviation of peak-to-peak amplitudes (3) standard deviation of systolic and diastolic interval ratios, and (4) mean standard deviation of pulse shape. We have adopted a support vector machine (SVM) which takes these parameters from clean and corrupted PPG signals and builds a decision boundary to classify them. We apply several distinct features of the PPG data to enhance classification performance. The algorithm we developed was verified on PPG data segments recorded by simulation, laboratory-controlled and walking/stair-climbing experiments, respectively, and we compared several well-established MNA detection methods to our proposed algorithm. All compared detection algorithms were evaluated in terms of motion artifact detection accuracy, heart rate (HR) error, and oxygen saturation (SpO2) error. For laboratory controlled finger, forehead recorded PPG data and daily-activity movement data, our proposed algorithm gives 94.4, 93.4, and 93.7% accuracies, respectively. Significant reductions in HR and SpO2 errors (2.3 bpm and 2.7%) were noted when the artifacts that were identified by SVM-MNA were removed from the original signal than without (17.3 bpm and 5.4%). The accuracy and error values of our proposed method were significantly higher and lower, respectively, than all other detection methods. Another advantage of our method is its ability to provide highly accurate onset and offset detection times of MNAs. This capability is important for an automated approach to signal reconstruction of only those data points that need to be reconstructed, which is the subject of the companion paper to this article. Finally, our MNA detection algorithm is real-time realizable as the computational speed on the 7-s PPG data segment was found to be only 7 ms with a Matlab code.


Subject(s)
Algorithms , Artifacts , Monitoring, Physiologic , Heart Rate , Humans , Motion , Oximetry , Photoplethysmography
15.
Ann Biomed Eng ; 42(11): 2251-63, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24823655

ABSTRACT

We introduce a new method to reconstruct motion and noise artifact (MNA) contaminated photoplethysmogram (PPG) data. A method to detect MNA corrupted data is provided in a companion paper. Our reconstruction algorithm is based on an iterative motion artifact removal (IMAR) approach, which utilizes the singular spectral analysis algorithm to remove MNA artifacts so that the most accurate estimates of uncorrupted heart rates (HRs) and arterial oxygen saturation (SpO2) values recorded by a pulse oximeter can be derived. Using both computer simulations and three different experimental data sets, we show that the proposed IMAR approach can reliably reconstruct MNA corrupted data segments, as the estimated HR and SpO2 values do not significantly deviate from the uncorrupted reference measurements. Comparison of the accuracy of reconstruction of the MNA corrupted data segments between our IMAR approach and the time-domain independent component analysis (TD-ICA) is made for all data sets as the latter method has been shown to provide good performance. For simulated data, there were no significant differences in the reconstructed HR and SpO2 values starting from 10 dB down to -15 dB for both white and colored noise contaminated PPG data using IMAR; for TD-ICA, significant differences were observed starting at 10 dB. Two experimental PPG data sets were created with contrived MNA by having subjects perform random forehead and rapid side-to-side finger movements show that; the performance of the IMAR approach on these data sets was quite accurate as non-significant differences in the reconstructed HR and SpO2 were found compared to non-contaminated reference values, in most subjects. In comparison, the accuracy of the TD-ICA was poor as there were significant differences in reconstructed HR and SpO2 values in most subjects. For non-contrived MNA corrupted PPG data, which were collected with subjects performing walking and stair climbing tasks, the IMAR significantly outperformed TD-ICA as the former method provided HR and SpO2 values that were non-significantly different than MNA free reference values.


Subject(s)
Artifacts , Signal Processing, Computer-Assisted , Heart Rate , Humans , Motion , Oximetry , Photoplethysmography
SELECTION OF CITATIONS
SEARCH DETAIL
...