Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Behav ; 129: 85-94, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24534179

ABSTRACT

Acute and chronic methylphenidate (MPD) exposure was recorded simultaneously for the rat's locomotor activity and the nucleus accumbens (NAc) neuronal activity. The evaluation of the neuronal events was based on the animal's behavior response to chronic MPD administration: 1) Animals exhibiting behavioral sensitization, 2) Animals exhibiting behavioral tolerance. The experiment lasted for 10days with four groups of animals; saline, 0.6, 2.5, and 10.0mg/kg MPD. For the main behavioral findings, about half of the animals exhibited behavioral sensitization or behavioral tolerance to 0.6, 2.5, and/or 10mg/kg MPD respectively. Three hundred and forty one NAc neuronal units were evaluated. Approximately 80% of NAc units responded to 0.6, 2.5, and 10.0mg/kg MPD. When the neuronal activity was analyzed based on the animals' behavioral response to chronic MPD exposure, significant differences were seen between the neuronal population responses recorded from animals that expressed behavioral sensitization when compared to the NAc neuronal responses recorded from animals exhibiting behavioral tolerance. Three types of neurophysiological sensitization and neurophysiological tolerance can be recognized following chronic MPD administration to the neuronal populations. Collectively, these findings show that the same dose of chronic MPD can elicit either behavioral tolerance or behavioral sensitization. Differential statistical analyses were used to verify our hypothesis that the neuronal activity recorded from animals exhibiting behavioral sensitization will respond differently to MPD compared to those animals exhibiting behavioral tolerance, thus, suggesting that it is essential to record the animal's behavior concomitantly with neuronal recordings.


Subject(s)
Akathisia, Drug-Induced/physiopathology , Central Nervous System Stimulants/pharmacology , Drug Tolerance/physiology , Methylphenidate/pharmacology , Neurons/drug effects , Nucleus Accumbens/drug effects , Action Potentials/drug effects , Animals , Central Nervous System Stimulants/administration & dosage , Dose-Response Relationship, Drug , Electrodes, Implanted , Male , Methylphenidate/administration & dosage , Motor Activity/drug effects , Motor Activity/physiology , Neurons/physiology , Nucleus Accumbens/physiology , Random Allocation , Rats, Sprague-Dawley
2.
Pharmacol Biochem Behav ; 101(2): 208-16, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22260871

ABSTRACT

The psychostimulant methylphenidate (MPD) is currently the most prescribed drug therapy for attention deficit hyperactivity disorder (ADHD) and is used by students as a cognitive enhancer. The caudate nucleus (CN) is a structure within the motive circuit where MPD exerts its effects, it is known to contain high levels of dopaminergic cells and directly influence motor activity. The objective of this study was to understand the role of CN in response to acute and chronic administration of MPD. Specific and non-specific bilateral ablations were created in the CN using electrolytic lesion and 6-Hydoxydopamine (6-OHDA). Four groups of rats were used: control (n=4), sham (n=4), CN electrolytic lesion group (n=8) and CN 6-OHDA injected group (n=8). On experimental day one (ED 1) all rats received a saline injection and baseline locomotive activity was recorded. On ED 2 and ED 3 CN sham, electrolytic lesion and/or 6-OHDA injected groups were made followed by four to five days recovery (ED 3-7), followed by six daily 2.5 mg/kg MPD injections (ED 9-14), three days of washout (ED 15-17) and an MPD re-challenge of drug proceeding the washout days (ED 18). Locomotor activity was obtained at ED 1, 8, 9, and 18 using an open field assay. The results show that the CN electrolytic lesion group responded to the acute and chronic MPD administration similar to the control and sham group, while the CN 6-OHDA injected group prevented the acute and the chronic effects of MPD administration. One possible interpretation why nonspecific electroyltic lesioning of the CN failed to prevent acute and chronic effects of MPD administration is due to destruction of both the direct and the indirect CN pathways which act as an inhibitory/excitatory balance, electroylticelectroyltic. The selective dopaminergic lesioning prevented the effects of MPD administration suggesting that dopaminergic pathways in CN play a significant role in the effects of MPD.


Subject(s)
Caudate Nucleus/drug effects , Methylphenidate/administration & dosage , Motor Activity/drug effects , Animals , Male , Oxidopamine/toxicity , Rats , Rats, Sprague-Dawley
3.
Brain Res Bull ; 87(4-5): 445-56, 2012 Mar 10.
Article in English | MEDLINE | ID: mdl-22248440

ABSTRACT

Methylphenidate (MPD) is a psychostimulant that enhances dopaminergic neurotransmission in the central nervous system by using mechanisms similar to cocaine and amphetamine. The mode of action of brain circuitry responsible for an animal's neuronal response to MPD is not fully understood. The nucleus accumbens (NAc) has been implicated in regulating the rewarding effects of psychostimulants. The present study used permanently implanted microelectrodes to investigate the acute and chronic effects of MPD on the firing rates of NAc neuronal units in freely behaving rats. On experimental day 1 (ED1), following a saline injection (control), a 30 min baseline neuronal recording was obtained immediately followed by a 2.5 mg/kg i.p. MPD injection and subsequent 60 min neuronal recording. Daily 2.5 mg/kg MPD injections were given on ED2 through ED6 followed by 3 washout days (ED7 to ED9). On ED10, neuronal recordings were resumed from the same animal after a saline and MPD (rechallenge) injection exactly as obtained on ED1. Sixty-seven NAc neuronal units exhibited similar wave shape, form and amplitude on ED1 and ED10 and their firing rates were used for analysis. MPD administration on ED1 elicited firing rate increases and decreases in 54% of NAc units when compared to their baselines. Six consecutive MPD administrations altered the neuronal baseline firing rates of 85% of NAc units. MPD rechallenge on ED10 elicited significant changes in 63% of NAc units. These alterations in firing rates are hypothesized to be through mechanisms that include D1 and D2-like DA receptor induced cellular adaptation and homeostatic adaptations/deregulation caused by acute and chronic MPD administration.


Subject(s)
Behavior, Animal/drug effects , Central Nervous System Stimulants/administration & dosage , Methylphenidate/administration & dosage , Neurons/drug effects , Nucleus Accumbens/drug effects , Animals , Central Nervous System Stimulants/toxicity , Male , Methylphenidate/toxicity , Microelectrodes , Motor Activity/drug effects , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...