Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Respir Investig ; 62(3): 348-355, 2024 May.
Article in English | MEDLINE | ID: mdl-38422914

ABSTRACT

BACKGROUND: Differences in disease behaviour and genotypes are described in Asian and Western interstitial lung disease (ILD) cohorts. Short leukocyte telomere length (LTL) correlates with poor outcomes in Western ILD cohorts but its significance in Asian populations is unknown. We aim to characterise the burden and clinical implications of short LTL in Singaporean ILD patients. METHODS: Patients diagnosed with ILD at Singapore General Hospital were prospectively recruited and compared against 36 healthy controls. The primary outcome was transplant-free survival. Genomic DNA from peripheral blood was extracted and LTL measured using quantitative polymerase chain reaction assay (qPCR). RESULTS: Amongst 165 patients, 37% had short LTL. There was a higher proportion of combined pulmonary fibrosis and emphysema (CPFE) patients with short LTL (n = 21, 34.4% vs n = 16, 15.4%; p < 0.001). Short LTL patients had reduced survival at 12-, 24- and 36-months and median survival of 24 months (p < 0.001) which remained significant following adjustment for smoking, GAP Stage and radiological UIP pattern (Hazard Ratio (HR), 2.74; 95%CI:1.46, 5.11; p = 0.002). They had increased respiratory-related mortality and acute exacerbation incidences. Despite similar baseline lung function, short LTL patients had a faster decline in absolute forced vital capacity (FVC) of -105.3 (95% CI: 151.4, -59.1) mL/year compared to -58.2 (95% CI: 82.9, -33.6) mL/year (p < 0.001) in normal LTL patients. CONCLUSION: Short LTL correlated with increased mortality and faster lung function decline in our Singaporean ILD cohort with a magnitude similar to that in Western ILD cohorts. Further research is needed to integrate LTL assessment into clinical practice.


Subject(s)
Lung Diseases, Interstitial , Pulmonary Emphysema , Pulmonary Fibrosis , Humans , Singapore/epidemiology , Lung Diseases, Interstitial/etiology , Pulmonary Fibrosis/complications , Pulmonary Emphysema/complications , Telomere/genetics , Retrospective Studies
2.
Hum Mol Genet ; 32(8): 1401-1409, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36562461

ABSTRACT

Monoallelic or biallelic RAD51C germline mutations results in chromosome instability disorders such as Fanconi anemia and cancers. The bona fide function of RAD51C is to assist RAD51 nucleoprotein filament onto single-strand DNA to complete homologous recombination (HR) repair. In addition to HR repair, the role of RAD51C in DNA replication is emerging when replication forks are transiently or irreversibly stalled. We identified novel RAD51C variants of uncertain significance (VUS) from breast, ovarian, pancreatic and gastric cancer patients and functionally characterized the effect of these variants in replication fork protection and double-strand breaks (DSB's) repair. In RAD51C-deficient Chinese hamster CL-V4B cells, expression of RAD51C F164S, A87E, L134S and E49K variants heightened sensitivity to mitomycin C (MMC), etoposide and PARP inhibition. Differently, expression of subset of RAD51C variants R24L, R24W and R212H displayed mild sensitivity to MMC, etoposide and PARP inhibition. Further functional characterization of a subset of variants revealed that Rad51C F164S, A87E, L134S and E49K variants displayed reduced RAD51 foci formation and increased overall nuclear single strand DNA levels in the presence of replication stress. Additionally, DNA fiber assay revealed that RAD51C F164S, A87E, L134S and E49K variants displayed defective replication fork protection upon prolonged fork stalling. Investigations using patient-derived lymphoblastoid cell line carrying heterozygous RAD51C L134S variant showed an impairment in RAD51 chromatin association and replication fork protection, suggestive of deleteriousness of this VUS variant. Overall, our findings provide more insights into molecular roles of RAD51C in replication fork integrity maintenance and in DSB repair.


Subject(s)
Germ-Line Mutation , Poly(ADP-ribose) Polymerase Inhibitors , Cricetinae , Animals , Humans , Etoposide , Rad51 Recombinase/genetics , DNA Replication , DNA Repair , DNA/metabolism , DNA-Binding Proteins/genetics
3.
Bioinformatics ; 38(18): 4395-4402, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35881697

ABSTRACT

MOTIVATION: DNA fibre assay has a potential application in genomic medicine, cancer and stem cell research at the single-molecule level. A major challenge for the clinical and research implementation of DNA fibre assays is the slow speed in which manual analysis takes place as it limits the clinical actionability. While automatic detection of DNA fibres speeds up this process considerably, current publicly available software have limited features in terms of their user interface for manual correction of results, which in turn limit their accuracy and ability to account for atypical structures that may be important in diagnosis or investigative studies. We recognize that core improvements can be made to the GUI to allow for direct interaction with automatic results to preserve accuracy as well as enhance the versatility of automatic DNA fibre detection for use in variety of situations. RESULTS: To address the unmet needs of diverse DNA fibre analysis investigations, we propose DNA Stranding, an open-source software that is able to perform accurate fibre length quantification (13.22% mean relative error) and fibre pattern recognition (R > 0.93) with up to six fibre patterns supported. With the graphical interface, we developed, user can conduct semi-automatic analyses which benefits from the advantages of both automatic and manual processes to improve workflow efficiency without compromising accuracy. AVAILABILITY AND IMPLEMENTATION: The software package is available at https://github.com/lgole/DNAStranding. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA , Software , Workflow , DNA Replication
4.
Endocr Relat Cancer ; 28(2): R55-R66, 2021 02.
Article in English | MEDLINE | ID: mdl-33300498

ABSTRACT

Co-ordinated oscillation of mammalian circadian clock and cell cycle is essential for cellular and organismal homeostasis. Existing preclinical, epidemiological, molecular and biochemical evidence reveals a robust interplay between circadian clock, genome instability and cancer. Furthermore, recent investigations have demonstrated that the alterations in circadian clock perturb genome stability by modulating the cell-cycle timing, altering DNA replication fork progression, influencing DNA damage response (DDR) and DNA repair efficiency. In this review, we examine the most recent findings from different eukaryotic model systems and discuss the functional interaction between circadian factors with key DNA replication, DDR and DNA repair genes.


Subject(s)
Circadian Clocks , Circadian Rhythm , Animals , Cell Cycle , Circadian Clocks/genetics , Circadian Rhythm/genetics , DNA Damage/genetics , DNA Repair/genetics
5.
JCO Precis Oncol ; 5: 577-584, 2021 11.
Article in English | MEDLINE | ID: mdl-34994607

ABSTRACT

PURPOSE: Genetic testing has clinical utility in the management of patients with hereditary cancer syndromes. However, the increased likelihood of encountering a variant of uncertain significance in individuals of non-European descent such as Asians may be challenging to both clinicians and patients. This study aims to evaluate the impact of variant reclassification in an Asian country with variants of uncertain significance reported in cancer predisposition genes. METHODS: A retrospective analysis of patients seen at the Cancer Genetics Service at the National Cancer Centre Singapore between February 2014 and March 2020 was conducted. The frequency, direction, and time to variant reclassification were evaluated by comparing the reclassified report against the original report. RESULTS: A total of 1,412 variants of uncertain significance were reported in 49.9% (845 of 1,695) of patients. Over 6 years, 6.7% (94 of 1,412) of variants were reclassified. Most variants of uncertain significance (94.1%, 80 of 85) were downgraded to benign or likely benign variant, with a smaller proportion of variants of uncertain significance (5.9%, 5 of 85) upgraded to pathogenic or likely pathogenic variant. Actionable variants of uncertain significance upgrades and pathogenic or likely pathogenic variant downgrades, which resulted in management changes, happened in 31.0% (39 of 126) of patients. The median and mean time taken for reclassification were 1 and 1.62 year(s), respectively. CONCLUSION: We propose a clinical guideline to standardize management of patients reported to have variants of uncertain significance. Management should be based on the patient's personal history, family history, and variant interpretation. For clinically relevant or suspicious variants of uncertain significance, follow-up is recommended every 2 years, as actionable reclassifications may happen during this period.


Subject(s)
Genetic Predisposition to Disease/genetics , Genetic Testing/methods , Neoplastic Syndromes, Hereditary/genetics , Asian People/genetics , Female , Genetic Variation , Humans , Male , Patient Care , Practice Guidelines as Topic , Retrospective Studies , Singapore
6.
Int J Cancer ; 148(3): 637-645, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32745242

ABSTRACT

Identification of ancestry-specific pathogenic variants is imperative for diagnostic, treatment, management and prevention strategies, and to understand penetrance/modifiers on risk. Our study aimed to determine the clinical significance of a recurrent BRCA1 c.442-22_442-13del variant of unknown significance identified among 13 carriers from six Chinese families, all with a significant history of breast and/or ovarian cancer. We further aimed to establish whether this was due to a founder effect and explore its origins. Haplotype analysis, using nine microsatellite markers encompassing 2.5 megabase pairs around the BRCA1 locus, identified a common haploblock specific to the variant carriers, confirming a founder effect. Variant age was estimated to date back 77.9 generations to 69 bc using the Gamma approach. On principal component analysis using single nucleotide polymorphisms merged with 1000 Genomes dataset, variant carriers were observed to overlap predominantly with the southern Han Chinese population. To determine pathogenicity of the variant, we assessed the functional effect on RAD51 foci formation as well as replication fork stability upon induction of DNA damage and observed an impaired DNA repair response associated with the variant. In summary, we identified an ancient Chinese founder mutation dating back 77.9 generations, possibly common among individuals of southern Han Chinese descent. Using evidence from phenotypic/family history studies, segregation analysis and functional characterization, the BRCA1 variant was reclassified from uncertain significance to pathogenic.


Subject(s)
Asian People/genetics , BRCA1 Protein/genetics , Founder Effect , Sequence Deletion , Adult , Aged , Asian People/ethnology , Cell Line, Tumor , China/ethnology , Female , Haplotypes , Heterozygote , Humans , Middle Aged , Pedigree , Singapore/ethnology
7.
NPJ Genom Med ; 5: 50, 2020.
Article in English | MEDLINE | ID: mdl-33240524

ABSTRACT

We have identified six patients harbouring distinct germline BAP1 mutations. In this study, we functionally characterise known BAP1 pathogenic and likely benign germline variants out of these six patients to aid in the evaluation and classification of unknown BAP1 germline variants. We found that pathogenic germline variants tend to encode truncated proteins, show diminished expression of epithelial-mesenchymal transition (EMT) markers, are localised in the cytosol and have reduced deubiquitinase capabilities. We show that these functional assays are useful for BAP1 variant curation and may be added in the American College of Medical Genetics and Genomics (ACMG) criteria for BAP1 variant classification. This will allow clinicians to distinguish between BAP1 pathogenic and likely benign variants reliably and may aid to quickly benchmark newly identified BAP1 germline variants. Classification of novel BAP1 germline variants allows clinicians to inform predisposed patients and relevant family members regarding potential cancer risks, with appropriate clinical interventions implemented if required.

8.
NPJ Genom Med ; 5: 39, 2020.
Article in English | MEDLINE | ID: mdl-33024574

ABSTRACT

Gitelman syndrome is a rare, recessively inherited disease characterized by chronic hypokalemia and hypomagnesemia as a result of defective electrolyte co-transport at the level of the distal convoluted tubule of the kidney. Here, we present the first report of a patient with Gitelman syndrome who developed multiple neoplasia including colorectal polyposis, synchronous colorectal cancers, recurrent breast fibroadenomata and a desmoid tumor. Whole-exome sequencing confirmed germline compound heterozygous mutations of c.179C > T and c.1326C > G in SLC12A3, and in addition, identified a monoallelic germline c.934-2A > G splice site mutation in MUTYH. In vitro, magnesium deficiency potentiated oxidative DNA damage in lymphoblastoid cell lines derived from the same patient. We postulate that monoallelic MUTYH mutations may manifest in the presence of cooperative non-genetic mechanisms, in this case possibly magnesium deficiency from Gitelman syndrome.

9.
Fam Cancer ; 19(2): 123-131, 2020 04.
Article in English | MEDLINE | ID: mdl-32048105

ABSTRACT

The PALB2 protein is essential to RAD51-mediated homologous recombination (HR) repair. Germline monoallelic PALB2 pathogenic variants confer significant risks for breast cancer. However, the majority of PALB2 variants remain classified as variants of unknown significance (VUS). We aim to functionally and mechanistically evaluate three novel PALB2 VUS. Patient-derived lymphoblastoid cell lines containing the VUS were analyzed for nuclear localization and foci formation of RAD51 as a measure of HR efficiency. To understand the mechanism underlying the HR deficiency, PALB2 nuclear localization was assessed using immunofluorescence studies. Among these VUS, c.3251C>T (p.Ser1084Leu) occurred in a patient with metastatic breast cancer while c.1054G>C (p.Glu352Gln) and c.1057A>G (p.Lys353Glu) were seen in patients with squamous cell carcinoma of skin and renal cell carcinoma respectively. Variant c.3251C>T was located within the WD40 domain which normally masked the nuclear export signal sequence responsible for nuclear delocalization of PALB2. Correspondingly, c.3251C>T displayed aberrant cytoplasmic localization of PALB2 which led to an impaired RAD51 nuclear localization and foci formation. On the other hand, both c.1054G>C and c.1057A>G showed intact HR functions and nuclear localization of PALB2, consistent with their locations within domains of no known function. Additionally, the prevalence of c.1054G>C was similar among healthy controls and patients with breast cancer (as seen in other studies), suggestive of its non-pathogenicity. In conclusion, our studies provided the functional evidence showing the deleterious effect of c.3251C>T, and non-deleterious effects of c.1054G>C and c.1057A>G. Using the ClinGen Pathogenicity calculator, c.3251C>T remains a VUS while c.1054G>C and c.1057A>G may be classified as likely benign variants.


Subject(s)
Cell Nucleus/metabolism , Fanconi Anemia Complementation Group N Protein/genetics , Germ-Line Mutation , Mutation, Missense , Neoplasms/genetics , Rad51 Recombinase/metabolism , Adult , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cytoplasm/metabolism , Fanconi Anemia Complementation Group N Protein/metabolism , Female , Genetic Variation , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Male , Middle Aged , Neoplasms/metabolism , Pedigree , Recombinational DNA Repair , Skin Neoplasms/genetics , Skin Neoplasms/metabolism
10.
Article in English | MEDLINE | ID: mdl-31371347

ABSTRACT

Germline pathogenic variants in BRCA1/2 account for one-third of familial breast cancers. The majority of BRCA1 function requires heterodimerization with BARD1. In contrast to BRCA1, BARD1 is a low-penetrance gene with an unclear clinical relevance, partly because of limited functional evidence. Using patient-derived lymphoblastoid cells, we functionally characterized two pathogenic variants (c.1833dupT, c.2099delG) and three variants of uncertain significance (VUSs) (c.73G>C, c.1217G>A, c.1918C>A). Three of these patients had breast cancers, whereas the remaining had colorectal cancers (n = 3). Both patients with pathogenic variants (c.1833dupT, c.2099delG) developed breast cancers with aggressive disease phenotypes such as triple-negative breast cancer and high cancer grades. As BARD1 encompasses multiple functional domains, including those of apoptosis and homologous recombination repair, we hypothesized that the function being impaired would correspond with the domain where the variant was located. Variants c.1918C>A, c.1833dupT, c.1217G>A, and c.2099delG, located within and proximal to apoptotic domains of ankyrin and BRCT, were associated with impaired apoptosis. Conversely, apoptosis function was preserved in c.73G>C, which was distant from the ankyrin domain. All variants displayed normal BRCA1 heterodimerization and RAD51 colocalization, consistent with their location being distal to BRCA1-and RAD51-binding domains. In view of deficient apoptosis, VUSs (c.1217G>A and c.1918C>A) may be pathogenic or likely pathogenic variants. In summary, functional analysis of BARD1 VUSs requires a combination of assays and, more importantly, the use of appropriate functional assays with consideration to the variant's location.


Subject(s)
Breast Neoplasms/genetics , Colorectal Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Adult , BRCA1 Protein/genetics , DNA Repair/genetics , Female , Germ Cells/metabolism , Germ-Line Mutation/genetics , Humans , Male , Middle Aged , Ovarian Neoplasms/genetics , Protein Domains/genetics , Triple Negative Breast Neoplasms/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
11.
J Clin Endocrinol Metab ; 104(11): 5573-5584, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31290966

ABSTRACT

CONTEXT: The interleukin-13 receptor alpha2 (IL13RA2), which is known to be overexpressed in glioblastoma multiforme, plays a role in various cellular processes such as cell migration that may contribute to tumor progression. Studies have attributed IL13RA2 to invasion and metastasis in cancers of the ovary, breast, and pancreas, but the pathological role of IL13RA2 in thyroid cancer is still unclear. OBJECTIVE: This study aims to evaluate IL13RA2 expression in thyroid carcinomas and to examine the role of IL13RA2 in the progression of papillary thyroid carcinoma (PTC). METHODS: IL13RA2 immunochemical staining was performed on tissue microarrays of 137 thyroid carcinomas from patients, and the differential profile of IL13RA2 was validated in thyroid cancer cell lines. In PTC cell lines, we functionally assessed the effects of IL13RA2 underexpression and overexpression on cell proliferation, cell migration, and epithelial-mesenchymal transition (EMT) by using CCK-8, transwell migration assay, quantitative RT-PCR, and Western blot analysis. RESULTS: IL13RA2 expression was significantly correlated with advanced tumor T stage (pT3 or pT4; P = 0.001) and regional lymph node metastasis (pN1; P < 0.001). The staining scores of IL13RA2 were significantly higher in PTC compared with follicular subtypes (P < 0.001) and correlated with advanced tumor stage among PTC samples (pT3 or pT4; P = 0.028). Knockdown of IL13RA2 in B-CPAP cells significantly reduced cell viability, cell migration, and EMT markers including N-cadherin, Vimentin, and Snail. Exogenous overexpression of IL13RA2 in K1 cells increased cell migration and EMT, although cell proliferation was not affected. CONCLUSION: IL13RA2 is differentially regulated in PTC and is involved in cell migration by enhancing EMT.


Subject(s)
Adenocarcinoma, Follicular/genetics , Interleukin-13 Receptor alpha2 Subunit/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/genetics , Adenocarcinoma, Follicular/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/pathology , Tissue Array Analysis , Young Adult
12.
JNCI Cancer Spectr ; 2(4): pky054, 2018 Oct.
Article in English | MEDLINE | ID: mdl-31360874

ABSTRACT

BACKGROUND: Growing evidence suggests a role for cancer susceptibility genes such as BRCA2 and PALB2 in young-onset colorectal cancers. Using a cohort of young colorectal cancer patients, we sought to identify and provide functional evidence for germline pathogenic variants of DNA repair genes not typically associated with colorectal cancer. METHODS: We recruited 88 patients with young-onset colorectal cancers seen at a general oncology center. Whole-exome sequencing was performed to identify variants in DNA repair and colorectal cancer predisposition genes. Pathogenic BRCA2 and PALB2 variants were analyzed using immunoblot and immunofluorescence on patient-derived lymphoblastoid cells. RESULTS: In general, our cohort displayed characteristic features of young-onset colorectal cancers. Most patients had left-sided tumors and were diagnosed at late stages. Four patients had familial adenomatous polyposis, as well as pathogenic APC variants. We identified 12 pathogenic variants evenly distributed between DNA repair and colorectal cancer predisposition genes. Six patients had pathogenic variants in colorectal cancer genes: APC (n = 4) and MUTYH monoallelic (n = 2). Another six had pathogenic variants in DNA repair genes: ATM (n = 1), BRCA2 (n = 1), PALB2 (n = 1), NTHL1 (n = 1), and WRN (n = 2). Pathogenic variants BRCA2 c.9154C>T and PALB2 c.1059delA showed deficient homologous recombination repair, evident from the impaired RAD51 nuclear localization and foci formation. CONCLUSION: A substantial portion of pathogenic variants in young-onset colorectal cancer was found in DNA repair genes not previously associated with colorectal cancer. This may have implications for the management of patients. Further studies are needed to ascertain the enrichment of pathogenic DNA repair gene variants in colorectal cancers.

13.
Sci Rep ; 7(1): 13302, 2017 10 16.
Article in English | MEDLINE | ID: mdl-29038488

ABSTRACT

DNA replication control is vital for maintaining genome stability and the cell cycle, perhaps most notably during cell division. Malignancies often exhibit defective minichromosome maintenance protein 2 (MCM2), a cancer proliferation biomarker that serves as a licensing factor in the initiation of DNA replication. MCM2 is also known to be one of the ATPase active sites that facilitates conformational changes and drives DNA unwinding at the origin of DNA replication. However, the biological networks of MCM2 in lung cancer cells via protein phosphorylation remain unmapped. The RNA-seq datasets from The Cancer Genome Atlas (TCGA) revealed that MCM2 overexpression is correlated with poor survival rate in lung cancer patients. To uncover MCM2-regulated functional networks in lung cancer, we performed multi-dimensional proteomic approach by integrating analysis of the phosphoproteome and proteome, and identified a total of 2361 phosphorylation sites on 753 phosphoproteins, and 4672 proteins. We found that the deregulation of MCM2 is involved in lung cancer cell proliferation, the cell cycle, and migration. Furthermore, HMGA1S99 phosphorylation was found to be differentially expressed under MCM2 perturbation in opposite directions, and plays an important role in regulating lung cancer cell proliferation. This study therefore enhances our capacity to therapeutically target cancer-specific phosphoproteins.


Subject(s)
Lung Neoplasms/metabolism , Minichromosome Maintenance Complex Component 2/metabolism , Proteome , Proteomics , Cell Cycle , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chromatography, Liquid , Computational Biology/methods , Gene Expression , Humans , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Minichromosome Maintenance Complex Component 2/genetics , Models, Biological , Phosphopeptides/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Prognosis , Protein Interaction Mapping , Protein Interaction Maps , Proteomics/methods , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...