Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 222: 114092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604323

ABSTRACT

Phytochemical study of the fruits of Chisocheton erythrocarpus (Hiern) allowed the identification of eight undescribed limonoids, namely erythrocarpines O - V (1-6, 7a and 7b), along with seven known compounds. The structures of these compounds were elucidated based on spectroscopic and HRMS data, along with electronic circular dichroism to configure the absolute configuration. Erythrocarpines O and P are γ-hydroxybutenolide analogs of mexicanolide-type limonoids while erythrocarpine Q - V are phragmalin-type limonoids possessing a 1,29-oxymethylene bridge with either benzoyl or cinnamoyl moiety in their structures. Mosquito larvicidal activity revealed that crude DCM extract of C. erythrocarpus possessed a good larvicidal effect against Aedes aegypti larvae in 48 h (LC50 = 153.0 ppm). Subsequent larvicidal activity of isolated compounds indicated that erythrocarpine G (10) and 14-deoxyxyloccensin K (11) were responsible for the enhanced larvicidal effect of the extract, reporting LC50 values of 18.55 ppm and 41.16 ppm, respectively. Moreover, residual activity testing of the crude DCM extract revealed that the duration of its larvicidal effects is up to 14 days, where it maintained a 98 % larval mortality throughout the test period, under laboratory conditions.


Subject(s)
Aedes , Fruit , Insecticides , Larva , Limonins , Meliaceae , Animals , Larva/drug effects , Limonins/pharmacology , Limonins/isolation & purification , Limonins/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/isolation & purification , Fruit/chemistry , Aedes/drug effects , Meliaceae/chemistry , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug
2.
Naturwissenschaften ; 111(2): 20, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558027

ABSTRACT

The Zingiber zerumbet rhizomes are traditionally used to treat fever, and the in vitro inhibitory effect of ethyl acetate extract from Zingiber zerumbet rhizomes (EAEZZR) against DENV2 NS2B/NS3 (two non-structural proteins, NS2 and NS3 of dengue virus type 2) has been reported earlier. This study was carried out to establish an acute toxicity profile and evaluate the anti-fever (anti-pyretic) activities of EAEZZR in yeast-induced fever in rats. The major compound of EAEZZR, zerumbone, was isolated using chromatographic methods including column chromatography (CC) and preparative thin-layer chromatography (PTLC). Additionally, the structure of zerumbone was elucidated using nuclear magnetic resonance (NMR), liquid chromatography mass spectrometer-ion trap-time of flight (LCMS-IT-TOF), infrared (IR), and ultraviolet (UV) spectroscopy. The toxicity of EAEZZR was evaluated using Organization for Economic Cooperation and Development Test Guideline 425 (OECD tg-425) with minor modifications at concentrations EAEZZR of 2000 mg/kg, 3000 mg/kg, and 5000 mg/kg. Anti-fever effect was determined by yeast-induced fever (pyrexia) in rats. The acute toxicity study showed that EAEZZR is safe at the highest 5000 mg/kg body weight dose in Sprague Dawley rats. Rats treated with EAEZZR at doses of 125, 250, and 500 mg/kg exhibited a significant reduction in rectal temperature (TR) in the first 1 h. EAEZZR at the lower dose of 125 mg/kg showed substantial potency against yeast-induced fever for up to 2 h compared to 0 h in controls. A significant reduction of TR was observed in rats treated with standard drug aspirin in the third through fourth hours. Based on the present findings, ethyl acetate extract of Zingiber zerumbet rhizomes could be considered safe up to the dose of 5000 mg/kg, and the identification of active ingredients of Zingiber zerumbet rhizomes may allow their use in the treatment of fever with dengue virus infection.


Subject(s)
Acetates , Plant Extracts , Rhizome , Sesquiterpenes , Rats , Animals , Rats, Sprague-Dawley , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Saccharomyces cerevisiae , Fever/drug therapy
3.
Fitoterapia ; 173: 105765, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38042506

ABSTRACT

A phytochemical study on the bark of Chisocheton erythrocarpus Hiern (Meliaceae) has led to the isolation of six new phragmalin-type limonoids named erythrocarpines I - N (1-6) along with one known limonoid, erythrocarpine F (7). Their structures were fully characterized by spectroscopic methods. The pre-treatment of NG108-15 cells with 1-5, 7 (2 h) demonstrated low to good protective effects against H2O2 exposure; 1 (83.77% ± 1.84 at 12.5 µM), 2 (69.07 ± 2.01 at 12.5 µM), 3 (80.38 ± 2.1 at 12.5 µM), 4 (62.33 ± 1.95 at 25 µM),5 (58.67 ± 1.85 at 50 µM) and 7 (66.07 ± 2.03 at 12.5 µM). Interestingly, 1 and 3 demonstrated comparable protective effects to positive control epigallocatechin gallate (EGCG) with similar cell viability capacity (≈ 80%), having achieved that at lower concentration (12.5 µM) than EGCG (50 µM). Collectively, the results suggested the promising use of 1 and 3 as potential neuroprotective agents against hydrogen peroxide-induced cytotoxicity in neuronal model.


Subject(s)
Limonins , Meliaceae , Neuroprotective Agents , Molecular Structure , Neuroprotective Agents/pharmacology , Hydrogen Peroxide , Limonins/pharmacology , Limonins/chemistry , Meliaceae/chemistry
4.
Chem Biodivers ; 13(5): 483-503, 2016 May.
Article in English | MEDLINE | ID: mdl-26970405

ABSTRACT

Chisocheton is one of the genera of the family Meliaceae and consists of ca. 53 species; the distribution of most of those are confined to the Indo-Malay region. Species of broader geographic distribution have undergone extensive phytochemical investigations. Previous phytochemical investigations of this genus resulted in the isolation of mainly limonoids, apotirucallane, tirucallane, and dammarane triterpenes. Reported bioactivities of the isolated compounds include cytotoxic, anti-inflammatory, antifungal, antimalarial, antimycobacterial, antifeedant, and lipid droplet inhibitory activities. Aside from chemistry and biological activities, this review also deals briefly with botany, distribution, and uses of various species of this genus.


Subject(s)
Meliaceae/chemistry , Phytochemicals/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Antimalarials/chemistry , Antimalarials/isolation & purification , Antimalarials/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Insecticides/chemistry , Insecticides/isolation & purification , Insecticides/pharmacology , Lipids/antagonists & inhibitors , Phytochemicals/chemistry , Phytochemicals/isolation & purification
5.
J Nat Prod ; 74(5): 1313-7, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21428417

ABSTRACT

Three new limonoids, chisomicines A-C (1-3), have been isolated from the bark of Chisocheton ceramicus. Their structures were determined by 2D NMR, CD spectroscopic methods, and X-ray analysis. Chisomicine A (1) exhibited NO production inhibitory activity in J774.1 cells stimulated by LPS dose-dependently at high cell viability.


Subject(s)
Limonins/isolation & purification , Meliaceae/chemistry , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Limonins/chemistry , Limonins/pharmacology , Lipopolysaccharides/pharmacology , Malaysia , Mice , Models, Molecular , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nuclear Magnetic Resonance, Biomolecular , Plant Bark/chemistry , omega-N-Methylarginine/pharmacology
6.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 8): o2142, 2010 Jul 31.
Article in English | MEDLINE | ID: mdl-21588429

ABSTRACT

Cyclo-art-24-ene-3ß,26-diol, C(30)H(50)O(2), isolated from the leaves of Aglaia exima, has three six-membered rings fused together that adopt chair conformations. There are two independent mol-ecules in the asymmetric unit. O-H⋯O hydrogen bond inter-actions between the hydroxyl groups in the 3ß and 26 positions lead to the formation of a layer structure parallel to (10).

SELECTION OF CITATIONS
SEARCH DETAIL
...