Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 147(6): 3932, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32611165

ABSTRACT

This paper employs serrated leading edges to inject streamwise vorticity to the downstream boundary layer and wake to manipulate the flow field and noise sources near the blunt trailing edge of an asymmetric aerofoil. The use of a large serration amplitude is found to be effective to suppress the first noise source-bluntness-induced vortex shedding tonal noise-through the destruction of the coherent eigenmodes in the wake. The second noise source is the instability noise, which is produced by the interaction between the boundary layer instability and separation bubble near the blunt edge. The main criterion needed to suppress this noise source is related to a small serration wavelength because, through the generation of more streamwise vortices, it would facilitate a greater level of destructive interaction with the separation bubble. If the leading edge has both a large serration amplitude and wavelength, the interaction between the counter-rotating vortices themselves would trigger a turbulent shear layer through an inviscid mechanism. The turbulent shear layer will produce strong hydrodynamic pressure fluctuations to the trailing edge, which then scatter into broadband noise and transform into a trailing edge noise mechanism. This would become the third noise source that can be identified in several serrated leading edge configurations. Overall, a leading edge with a large serration amplitude and small serration wavelength appears to be the optimum choice to suppress the first and second noise sources and, at the same time, avoid the generation of the third noise source.

2.
J Acoust Soc Am ; 140(2): 1361, 2016 08.
Article in English | MEDLINE | ID: mdl-27586762

ABSTRACT

This paper reports an aeroacoustic investigation of a NACA0012 airfoil with a number of poro-serrated trailing edge devices that contain porous materials of various air flow resistances at the gaps between adjacent members of the serrated-sawtooth trailing edge. The main objective of this work is to determine whether multiple-mechanisms on the broadband noise reduction can co-exist on a poro-serrated trailing edge. When the sawtooth gaps are filled with porous material of low-flow resistivity, the vortex shedding tone at low-frequency could not be completely suppressed at high-velocity, but a reasonably good broadband noise reduction can be achieved at high-frequency. When the sawtooth gaps are filled with porous material of very high-flow resistivity, no vortex shedding tone is present, but the serration effect on the broadband noise reduction becomes less effective. An optimal choice of the flow resistivity for a poro-serrated configuration has been identified, where it can surpass the conventional serrated trailing edge of the same geometry by achieving a further 1.5 dB reduction in the broadband noise while completely suppressing the vortex shedding tone. A weakened turbulent boundary layer noise scattering at the poro-serrated trailing edge is reflected by the lower-turbulence intensity at the near wake centreline across the whole spanwise wavelength of the sawtooth.

3.
J Acoust Soc Am ; 131(6): EL461-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22713022

ABSTRACT

The presence of a "ladder" structure in the airfoil tonal noise was discovered in the 1970s, but its mechanism hitherto remains a subject of continual investigation in the research community. Based on the measured noise results and some numerical analysis presented in this letter, the variations of four types of airfoil tonal noise frequencies with the flow velocity were analyzed individually. The ladder structure is proposed to be caused by the acoustic/hydrodynamic frequency lag between the scattering of the boundary layer instability noise and the discrete noise produced by an aeroacoustic feedback loop.

4.
Ann N Y Acad Sci ; 972: 95-102, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12496003

ABSTRACT

Turbulent wedges induced by a three-dimensional surface roughness placed on a flat plate were studied using both shear sensitive and temperature sensitive liquid crystals, respectively denoted by SSLC and TSLC. The experiments were carried out at a free-stream velocity of 28 m/sec at three different favorable pressure gradients. The purpose of this investigation was to examine the spreading angles of the turbulent wedges, as indicated by their associated surface shear stresses and heat transfer characteristics, and to obtain more insight about the behavior of transitional momentum and thermal boundary layers when a streamwise pressure gradient exists. It was shown that under a zero pressure gradient the spreading angles indicated by the two types of liquid crystals are the same, but the difference increases as the level of the favorable pressure gradient increases. The result from the present study is important for modelling the transition of thermal boundary layers over gas turbine blades.

SELECTION OF CITATIONS
SEARCH DETAIL
...