Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Sci Rep ; 14(1): 11018, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744902

ABSTRACT

Antibody-drug conjugates (ADC) payloads are cleavable drugs that act as the warhead to exert an ADC's cytotoxic effects on cancer cells intracellularly. A simple and highly sensitive workflow is developed and validated for the simultaneous quantification of six ADC payloads, namely SN-38, MTX, DXd, MMAE, MMAF and Calicheamicin (CM). The workflow consists of a short and simple sample extraction using a methanol-ethanol mixture, followed by a fast liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. The results showed that well-validated linear response ranges of 0.4-100 nM for SN38, MTX and DXd, 0.04-100 nM for MMAE and MMAF, 0.4-1000 nM for CM were achieved in mouse serum. Recoveries for all six payloads at three different concentrations (low, medium and high) were more than 85%. An ultra-low sample volume of only 5 µL of serum is required due to the high sensitivity of the method. This validated method was successfully applied to a pharmacokinetic study to quantify MMAE in mouse serum samples.


Subject(s)
Immunoconjugates , Tandem Mass Spectrometry , Animals , Mice , Chromatography, Liquid/methods , Immunoconjugates/pharmacokinetics , Immunoconjugates/chemistry , Tandem Mass Spectrometry/methods , Workflow , Liquid Chromatography-Mass Spectrometry
2.
Sci Rep ; 13(1): 15620, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37731040

ABSTRACT

Monoclonal antibodies (mAbs) eliminate cancer cells via various effector mechanisms including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), which are influenced by the N-glycan structures on the Fc region of mAbs. Manipulating these glycan structures on mAbs allows for optimization of therapeutic benefits associated with effector functions. Traditional approaches such as gene deletion or overexpression often lead to only all-or-nothing changes in gene expression and fail to modulate the expression of multiple genes at defined ratios and levels. In this work, we have developed a CHO cell engineering platform enabling modulation of multiple gene expression to tailor the N-glycan profiles of mAbs for enhanced effector functions. Our platform involves a CHO targeted integration platform with two independent landing pads, allowing expression of multiple genes at two pre-determined genomic sites. By combining with internal ribosome entry site (IRES)-based polycistronic vectors, we simultaneously modulated the expression of α-mannosidase II (MANII) and chimeric ß-1,4-N-acetylglucosaminyl-transferase III (cGNTIII) genes in CHO cells. This strategy enabled the production of mAbs carrying N-glycans with various levels of bisecting and non-fucosylated structures. Importantly, these engineered mAbs exhibited different degrees of effector cell activation and CDC, facilitating the identification of mAbs with optimal effector functions. This platform was demonstrated as a powerful tool for producing antibody therapeutics with tailored effector functions via precise engineering of N-glycan profiles. It holds promise for advancing the field of metabolic engineering in mammalian cells.


Subject(s)
Antibodies, Monoclonal , Antibody-Dependent Cell Cytotoxicity , Animals , Cricetinae , Antibodies, Monoclonal/genetics , Cricetulus , Apoptosis , Polysaccharides/genetics
3.
Cytotherapy ; 24(7): 711-719, 2022 07.
Article in English | MEDLINE | ID: mdl-35177337

ABSTRACT

Complements and neutrophils are two key players of the innate immune system that are widely implicated as drivers of severe COVID-19 pathogenesis, as evident by the direct correlation of respiratory failure and mortality with elevated levels of terminal complement complex C5b-9 and neutrophils. In this study, we identified a feed-forward loop between complements and neutrophils that could amplify and perpetuate the cytokine storm seen in severe SARS-CoV-2-infected patients. We observed for the first time that the terminal complement activation complex C5b-9 directly triggered neutrophil extracellular trap (NET) release and interleukin (IL)-17 production by neutrophils. This is also the first report that the production of NETs and IL-17 induced by C5b-9 assembly on neutrophils could be abrogated by mesenchymal stem cell (MSC) exosomes. Neutralizing anti-CD59 antibodies abolished this abrogation. Based on our findings, we hypothesize that MSC exosomes could alleviate the immune dysregulation in acute respiratory failure, such as that observed in severe COVID-19 patients, by inhibiting complement activation through exosomal CD59, thereby disrupting the feed-forward loop between complements and neutrophils to inhibit the amplification and perpetuation of inflammation during SARS-CoV-2 infection.


Subject(s)
COVID-19 , Exosomes , Mesenchymal Stem Cells , COVID-19/therapy , Complement Membrane Attack Complex , Humans , Neutrophils , SARS-CoV-2
4.
Am J Sports Med ; 50(3): 788-800, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35099327

ABSTRACT

BACKGROUND: Previous studies have reported the efficacy of human mesenchymal stem cell (MSC) exosomes for the repair of osteochondral defects in rats and rabbits. However, the safety and efficacy of MSC exosomes remain to be validated in a clinically relevant large animal model. PURPOSE: To validate the safety and efficacy of human MSC exosomes for osteochondral repair in a clinically relevant micropig model. STUDY DESIGN: Controlled laboratory study. METHODS: Bilateral osteochondral defects (6-mm diameter and 1-mm depth) were surgically created in the medial femoral condyles in knees of 12 micropigs. The pigs then received 2-mL intra-articular injections of MSC exosomes and hyaluronic acid (HA) (Exosome+HA) or HA alone after surgery and thereafter at 8 and 15 days. Osteochondral repair was assessed by magnetic resonance imaging (MRI) at 15 days and at 2 and 4 months after surgery as well as by macroscopic, histological, biomechanical, and micro-computed tomography (micro-CT) analyses at 4 months after surgery. RESULTS: Exosome+HA-treated defects demonstrated significantly better MRI scores than HA-treated defects at 15 days and at 2 and 4 months. Additionally, Exosome+HA-treated defects demonstrated functional cartilage and subchondral bone repair, with significantly better macroscopic and histological scores and biomechanical properties (Young modulus and stiffness) than HA-treated defects at 4 months. Micro-CT further showed significantly higher bone volume and trabecular thickness in the subchondral bone of Exosome+HA-treated defects than that of HA-treated defects. Importantly, no adverse response or major systemic alteration was observed in any of the animals. CONCLUSION: This study shows that the combination of MSC exosomes and HA administered at a clinically acceptable frequency of 3 weekly intra-articular injections can promote functional cartilage and subchondral bone repair, with significantly improved morphological, histological, and biomechanical outcomes in a clinically relevant porcine model. CLINICAL RELEVANCE: Our findings provide a robust scientific rationale to support a phase 1/2 clinical trial to test MSC exosomes in patients with osteochondral lesions.


Subject(s)
Cartilage, Articular , Exosomes , Mesenchymal Stem Cells , Animals , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/surgery , Humans , Hyaluronic Acid , Rabbits , Rats , Swine , X-Ray Microtomography
5.
Front Chem ; 9: 661406, 2021.
Article in English | MEDLINE | ID: mdl-34084765

ABSTRACT

The glycosylation of antibody-based proteins is vital in translating the right therapeutic outcomes of the patient. Despite this, significant infrastructure is required to analyse biologic glycosylation in various unit operations from biologic development, process development to QA/QC in bio-manufacturing. Simplified mass spectrometers offer ease of operation as well as the portability of method development across various operations. Furthermore, data analysis would need to have a degree of automation to relay information back to the manufacturing line. We set out to investigate the applicability of using a semiautomated data analysis workflow to investigate glycosylation in different biologic development test cases. The workflow involves data acquisition using a BioAccord LC-MS system with a data-analytical tool called GlycopeptideGraphMS along with Progenesis QI to semi-automate glycoproteomic characterisation and quantitation with a LC-MS1 dataset of a glycopeptides and peptides. Data analysis which involved identifying glycopeptides and their quantitative glycosylation was performed in 30 min with minimal user intervention. To demonstrate the effectiveness of the antibody and biologic glycopeptide assignment in various scenarios akin to biologic development activities, we demonstrate the effectiveness in the filtering of IgG1 and IgG2 subclasses from human serum IgG as well as innovator drugs trastuzumab and adalimumab and glycoforms by virtue of their glycosylation pattern. We demonstrate a high correlation between conventional released glycan analysis with fluorescent tagging and glycopeptide assignment derived from GraphMS. GraphMS workflow was then used to monitor the glycoform of our in-house trastuzumab biosimilar produced in fed-batch cultures. The demonstrated utility of GraphMS to semi-automate quantitation and qualitative identification of glycopeptides proves to be an easy data analysis method that can complement emerging multi-attribute monitoring (MAM) analytical toolsets in bioprocess environments.

6.
Cytotherapy ; 23(5): 373-380, 2021 05.
Article in English | MEDLINE | ID: mdl-33934807

ABSTRACT

Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50-200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex "work-in-progress" MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.


Subject(s)
Extracellular Vesicles , Graft vs Host Disease , Mesenchymal Stem Cells , Humans , Prospective Studies
7.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918628

ABSTRACT

Mesenchymal-stem/stromal-cell-derived small extracellular vesicles (MSC-sEV) have been shown to ameliorate many diseases in preclinical studies. However, translating MSC-sEV into clinical use requires the development of scalable manufacturing processes for highly reproducible preparations of safe and potent MSC-sEVs. A major source of variability in MSC-sEV preparations is EV producer cells. To circumvent variability in producer cells, clonal immortalized MSC lines as EV producer lines are increasingly being used for sEV production. The use of sEVs from immortalized producer cells inevitably raises safety concerns regarding the tumorigenicity or tumor promoting potential of the EV products. In this study, cells from E1-MYC line, a MSC cell line immortalized with the MYC gene, were injected subcutaneously into athymic nude mice. At 84 days post-injection, no tumor formation was observed at the injection site, lungs, or lymph nodes. E1-MYC cells pre-and post-sEV production did not exhibit anchorage-independent growth in soft agar. Daily intraperitoneal injections of 1 or 5 µg sEVs from E1-MYC into athymic nude mice with FaDu human head and neck cancer xenografts for 28 days did not promote or inhibit tumor growth relative to the xenograft treated with vehicle control. Therefore, MYC-immortalized MSCs are not tumorigenic and sEVs from these MSCs do not promote tumor growth.

8.
Int J Mol Sci ; 22(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33450859

ABSTRACT

Severe psoriasis, a chronic inflammatory skin disease is increasingly being effectively managed by targeted immunotherapy but long-term immunotherapy poses health risk and loss of response. Therefore, there is a need for alternative therapy strategies. Mesenchymal stem/stromal cell (MSC) exosomes are widely known for their potent immunomodulatory properties. Here we investigated if topically applied MSC exosomes could alleviate psoriasis-associated inflammation. Topically applied fluorescent exosomes on human skin explants were confined primarily to the stratum corneum with <1% input fluorescence exiting the explant over a 24-h period. Nevertheless, topically applied MSC exosomes in a mouse model of imiquimod (IMQ) psoriasis significantly reduced IL-17 and terminal complement activation complex C5b-9 in the mouse skin. MSC exosomes were previously shown to inhibit complement activation, specifically C5b-9 complex formation through CD59. Infiltration of neutrophils into the stratum corneum is characteristic of psoriasis and neutrophils are a major cellular source of IL-17 in psoriasis through the release of neutrophil extracellular traps (NETs). We propose that topically applied MSC exosomes inhibit complement activation in the stratum corneum and this alleviates IL-17 release by NETS from neutrophils that accumulate in and beneath the stratum corneum.


Subject(s)
Exosomes/metabolism , Imiquimod/adverse effects , Mesenchymal Stem Cells/metabolism , Psoriasis/etiology , Psoriasis/pathology , Administration, Topical , Animals , Biomarkers , Biopsy , Disease Models, Animal , Mice , Permeability , Phenotype , Psoriasis/therapy , Skin/drug effects , Skin/metabolism , Skin/pathology , Skin Absorption
9.
Beilstein J Org Chem ; 16: 2087-2099, 2020.
Article in English | MEDLINE | ID: mdl-32952725

ABSTRACT

The accurate assessment of antibody glycosylation during bioprocessing requires the high-throughput generation of large amounts of glycomics data. This allows bioprocess engineers to identify critical process parameters that control the glycosylation critical quality attributes. The advances made in protocols for capillary electrophoresis-laser-induced fluorescence (CE-LIF) measurements of antibody N-glycans have increased the potential for generating large datasets of N-glycosylation values for assessment. With large cohorts of CE-LIF data, peak picking and peak area calculations still remain a problem for fast and accurate quantitation, despite the presence of internal and external standards to reduce misalignment for the qualitative analysis. The peak picking and area calculation problems are often due to fluctuations introduced by varying process conditions resulting in heterogeneous peak shapes. Additionally, peaks with co-eluting glycans can produce peaks of a non-Gaussian nature in some process conditions and not in others. Here, we describe an approach to quantitatively and qualitatively curate large cohort CE-LIF glycomics data. For glycan identification, a previously reported method based on internal triple standards is used. For determining the glycan relative quantities our method uses a clustering algorithm to 'divide and conquer' highly heterogeneous electropherograms into similar groups, making it easier to define peaks manually. Open-source software is then used to determine peak areas of the manually defined peaks. We successfully applied this semi-automated method to a dataset (containing 391 glycoprofiles) of monoclonal antibody biosimilars from a bioreactor optimization study. The key advantage of this computational approach is that all runs can be analyzed simultaneously with high accuracy in glycan identification and quantitation and there is no theoretical limit to the scale of this method.

10.
Int J Mol Sci ; 21(2)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31936170

ABSTRACT

Chimeric antigen receptors (CARs) have found clinical success in B cell malignancies, but a dearth of potential targets limits their wider clinical application, especially in solid tumours. Here, we describe the development of an anti-annexin A2 CAR, CAR(2448), derived from an antibody found to have activity against epithelial ovarian cancer cell lines. The spacer length of CAR(2448) was optimised based on in vitro cytotoxic activity against ovarian cancer (OC) cell lines via a real-time cytotoxicity assay. The longer spacer CAR(2448)L T cells exhibit significant effector activity, inducing inflammatory cytokine release and cytotoxicity against OC cell lines. Furthermore, CAR(2448)L-BBz T cells induced enhanced survival in an in vivo OC xenograft model and reduced tumour volume by 76.6%. Our preclinical studies of CAR(2448) suggest its potential for the unmet need of novel strategies for the treatment of ovarian cancer.


Subject(s)
Annexin A2/immunology , Carcinoma, Ovarian Epithelial/therapy , Immunotherapy, Adoptive , Ovarian Neoplasms/therapy , Receptors, Chimeric Antigen/therapeutic use , Animals , Annexin A2/antagonists & inhibitors , Carcinoma, Ovarian Epithelial/immunology , Cell Line, Tumor , Female , Humans , Immunotherapy, Adoptive/methods , Mice, Inbred NOD , Mice, SCID , Ovarian Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
11.
Int J Mol Sci ; 20(22)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731794

ABSTRACT

Pluripotent stem cells (PSCs) comprise both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). The application of pluripotent stem cells is divided into four main areas, namely: (i) regenerative therapy, (ii) the study and understanding of developmental biology, (iii) drug screening and toxicology and (iv) disease modeling. In this review, we describe a new opportunity for PSCs, the discovery of new biomarkers and generating antibodies against these biomarkers. PSCs are good sources of immunogen for raising monoclonal antibodies (mAbs) because of the conservation of oncofetal antigens between PSCs and cancer cells. Hence mAbs generated using PSCs can potentially be applied in two different fields. First, these mAbs can be used in regenerative cell therapy to characterize the PSCs. In addition, the mAbs can be used to separate or eliminate contaminating or residual undifferentiated PSCs from the differentiated cell product. This step is critical as undifferentiated PSCs can form teratomas in vivo. The mAbs generated against PSCs can also be used in the field of oncology. Here, novel targets can be identified and the mAbs developed as targeted therapy to kill the cancer cells. Conversely, as new and novel oncofetal biomarkers are discovered on PSCs, cancer mAbs that are already approved by the FDA can be repurposed for regenerative medicine, thus expediting the route to the clinics.


Subject(s)
Pluripotent Stem Cells/metabolism , Regenerative Medicine/methods , Cell- and Tissue-Based Therapy/methods , Humans
12.
Biotechnol Bioeng ; 116(11): 2996-3005, 2019 11.
Article in English | MEDLINE | ID: mdl-31388993

ABSTRACT

This study describes the use of a previously reported chimerised monoclonal antibody (mAb), ch2448, to kill human embryonic stem cells (hESCs) in vivo and prevent or delay the formation of teratomas. ch2448 was raised against hESCs and was previously shown to effectively kill ovarian and breast cancer cells in vitro and in vivo. The antigen target was subsequently found to be Annexin A2, an oncofetal antigen expressed on both embryonic cells and cancer cells. Against cancer cells, ch2448 binds and kills via antibody-dependent cell-mediated cytotoxicity (ADCC) and/or antibody-drug conjugate (ADC) routes. Here, we investigate if the use of ch2448 can be extended to hESC. ch2448 was found to bind specifically to undifferentiated hESC but not differentiated progenitors. Similar to previous study using cancer cells, ch2448 kills hESC in vivo either indirectly by eliciting ADCC or directly as an ADC. The treatment with ch2448 post-transplantation eliminated the in vivo circulating undifferentiated cells and prevented or delayed the formation of teratomas. This surveillance role of ch2448 adds an additional layer of safeguard to enhance the safety and efficacious use of pluripotent stem cell-derived products in regenerative medicine. Thereby, translating the use of ch2448 in the treatment of cancers to a proof of concept study in hESC (or pluripotent stem cell [PSC]), we show that mAbs can also be used to eliminate teratoma forming cells in vivo during PSC-derived cell therapies. We propose to use this strategy to complement existing methods to eliminate teratoma-forming cells in vitro. Residual undifferentiated cells may escape in vitro removal methods and be introduced into patients together with the differentiated cells.


Subject(s)
Annexin A2/metabolism , Antineoplastic Agents, Immunological/pharmacology , Cell Tracking , Human Embryonic Stem Cells , Neoplasm Proteins/metabolism , Stem Cell Transplantation , Teratoma , Animals , Heterografts , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/pathology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Teratoma/diagnostic imaging , Teratoma/metabolism , Teratoma/pathology
13.
Anal Chem ; 91(14): 9078-9085, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31179689

ABSTRACT

Glycan head-groups attached to glycosphingolipids (GSLs) found in the cell membrane bilayer can alter in response to external stimuli and disease, making them potential markers and/or targets for cellular disease states. To identify such markers, comprehensive analyses of glycan structures must be undertaken. Conventional analyses of fluorescently labeled glycans using hydrophilic interaction high-performance liquid chromatography (HILIC) coupled with mass spectrometry (MS) provides relative quantitation and has the ability to perform automated glycan assignments using glucose unit (GU) and mass matching. The use of ion mobility (IM) as an additional level of separation can aid the characterization of closely related or isomeric structures through the generation of glycan collision cross section (CCS) identifiers. Here, we present a workflow for the analysis of procainamide-labeled GSL glycans using HILIC-IM-MS and a new, automated glycan identification strategy whereby multiple glycan attributes are combined to increase accuracy in automated structural assignments. For glycan matching and identification, an experimental reference database of GSL glycans containing GU, mass, and CCS values for each glycan was created. To assess the accuracy of glycan assignments, a distance-based confidence metric was used. The assignment accuracy was significantly better compared to conventional HILIC-MS approaches (using mass and GU only). This workflow was applied to the study of two Triple Negative Breast Cancer (TNBC) cell lines and revealed potential GSL glycosylation signatures characteristic of different TNBC subtypes.


Subject(s)
Glycosphingolipids/chemistry , Polysaccharides/analysis , Bacterial Proteins/chemistry , Cell Line, Tumor , Chromatography, High Pressure Liquid/methods , Glycoside Hydrolases/chemistry , Humans , Mass Spectrometry/methods , Rhodococcus/enzymology , Triple Negative Breast Neoplasms/classification
14.
J Extracell Vesicles ; 8(1): 1609206, 2019.
Article in English | MEDLINE | ID: mdl-31069028

ABSTRACT

Small extracellular vesicles (sEVs) from mesenchymal stromal/stem cells (MSCs) are transiting rapidly towards clinical applications. However, discrepancies and controversies about the biology, functions, and potency of MSC-sEVs have arisen due to several factors: the diversity of MSCs and their preparation; various methods of sEV production and separation; a lack of standardized quality assurance assays; and limited reproducibility of in vitro and in vivo functional assays. To address these issues, members of four societies (SOCRATES, ISEV, ISCT and ISBT) propose specific harmonization criteria for MSC-sEVs to facilitate data sharing and comparison, which should help to advance the field towards clinical applications. Specifically, MSC-sEVs should be defined by quantifiable metrics to identify the cellular origin of the sEVs in a preparation, presence of lipid-membrane vesicles, and the degree of physical and biochemical integrity of the vesicles. For practical purposes, new MSC-sEV preparations might also be measured against a well-characterized MSC-sEV biological reference. The ultimate goal of developing these metrics is to map aspects of MSC-sEV biology and therapeutic potency onto quantifiable features of each preparation.

15.
Sci Rep ; 8(1): 11608, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30072783

ABSTRACT

Monoclonal antibodies (mAbs) are used as targeted therapies against cancers. These mAbs kill cancer cells via various mechanisms of actions. In this study, human embryonic stem cells (hESCs) was used as the immunogen to generate a panel of antibodies. From this panel of mAbs, A19 was found to bind both hESC and various cancer cell lines. The antigen target of A19 was identified as Erbb-2 and glycan analysis showed that A19 binds to a N-glycan epitope on the antigen. A19 was elucidated to internalize into cancer cells following binding to Erbb-2 and hence developed as an antibody-drug conjugate (ADC). Using ADC as the mechanism of action, A19 was able to kill cancer cells in vitro and delayed the onset of tumour formation in mice xenograft model. When compared to Herceptin, A19 binds to different isoforms of Erbb-2 and does not compete with Herceptin for the same epitope. Hence, A19 has the potential to be developed as an alternative targeted therapeutic agent for cancers expressing Erbb-2.


Subject(s)
Antibodies, Monoclonal, Murine-Derived , Antigens, Neoplasm/immunology , Antineoplastic Agents, Immunological/pharmacology , Human Embryonic Stem Cells/immunology , Neoplasms, Experimental , Animals , Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Monoclonal, Murine-Derived/pharmacology , Antineoplastic Agents, Immunological/immunology , Cell Line, Tumor , Female , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Xenograft Model Antitumor Assays
16.
Oncotarget ; 9(17): 13206-13221, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29568351

ABSTRACT

Monoclonal antibodies (mAbs) play an increasingly important role in cancer therapy. To address the wide heterogeneity of the disease, the identification of novel antigen targets and the development of mAbs against them are needed. Our lab previously generated a panel of mAbs against human embryonic stem cells (hESC) using a whole cell immunization approach in mice. These mAbs can potentially target oncofetal antigens and be repurposed for antibody or antibody drug conjugate (ADC) therapy. From this panel, the novel IgG1 2448 was found to bind surface antigens on hESC and multiple cancer cell lines. Here, we show 2448 targets a unique glycan epitope on annexin A2 (ANXA2) and can potentially monitor the Epithelial-Mesenchymal Transition (EMT) in ovarian and breast cancer. To evaluate 2448 as a potential drug, 2448 was engineered and expressed as a chimeric IgG1. Chimeric 2448 (ch2448) demonstrated efficient and specific killing when conjugated to cytotoxic payloads as an ADC. In addition, ch2448 elicited potent antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro and in vivo. Further engineering of ch2448 to remove fucose in the Fc domain enhanced ADCC. Overall, these findings indicate that embryonic ANXA2 is an attractive target and suggest that ch2448 is a promising candidate for further therapeutic development.

17.
J Biomed Mater Res B Appl Biomater ; 106(5): 1887-1896, 2018 07.
Article in English | MEDLINE | ID: mdl-28941021

ABSTRACT

Functionalizing medical devices with polypeptides to enhance their performance has become important for improved clinical success. The extracellular matrix (ECM) adhesion protein vitronectin (VN) is an effective coating, although the chemistry used to attach VN often reduces its bioactivity. In vivo, VN binds the ECM in a sequence-dependent manner with heparan sulfate (HS) glycosaminoglycans. We reasoned therefore that sequence-based affinity chromatography could be used to isolate a VN-binding HS fraction (HS9) for use as a coating material to capture VN onto implant surfaces. Binding avidity and specificity of HS9 were confirmed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR)-based assays. Plasma polymerization of allylamine (AA) to tissue culture-treated polystyrene (TCPS) was then used to capture and present HS9 as determined by radiolabeling and ELISA. HS9-coated TCPS avidly bound VN, and this layered surface supported the robust attachment, expansion, and maintenance of human pluripotent stem cells. Compositional analysis demonstrated that 6-O- and N-sulfation, as well as lengths greater than three disaccharide units (dp6) are critical for VN binding to HS-coated surfaces. Importantly, HS9 coating reduced the threshold concentration of VN required to create an optimally bioactive surface for pluripotent stem cells. We conclude that affinity-purified heparan sugars are able to coat materials to efficiently bind adhesive factors for biomedical applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1887-1896, 2018.


Subject(s)
Coated Materials, Biocompatible/chemistry , Extracellular Matrix Proteins/chemistry , Heparitin Sulfate/chemistry , Pluripotent Stem Cells/metabolism , Vitronectin/chemistry , Cell Adhesion , Cell Line , Humans , Pluripotent Stem Cells/cytology
18.
Stem Cells Dev ; 26(21): 1552-1565, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28891400

ABSTRACT

The aim of stem cell therapy after cardiac injury is to replace damaged cardiac tissue. Human cardiac progenitor cells (CPCs) represent an interesting cell population for clinical strategies to treat cardiac disease and human CPC-specific antibodies would aid in the clinical implementation of cardiac progenitor-based cell therapy. However, the field of CPC biology suffers from the lack of human CPC-specific markers. Therefore, we raised a panel of monoclonal antibodies (mAb) against CPCs. Of this panel of antibodies, we show that mAb C1096 recognizes a progenitor-like population in the fetal and adult human heart and partially colocalize with reported CPC populations in vitro. Furthermore, mAb C1096 can be used to isolate a multipotent progenitor population from human heart tissue. Interestingly, the two lead candidates, mAb C1096 and mAb C19, recognize glycosylated residues on PECAM1 (platelet and endothelial cell adhesion molecule 1) and GRP78, respectively, and de-N-glycosylation significantly abolishes their binding. Thereby, this report describes new clinically applicable antibodies against human CPCs, and for the first time demonstrates the importance of glycosylated residues as CPCs specific markers.


Subject(s)
Embryonic Stem Cells/cytology , Heat-Shock Proteins/immunology , Myoblasts, Cardiac/cytology , Platelet Endothelial Cell Adhesion Molecule-1/immunology , Antibodies, Monoclonal/immunology , Antigens, Surface/immunology , Cells, Cultured , Embryonic Stem Cells/immunology , Endoplasmic Reticulum Chaperone BiP , Glycosylation , Humans , Myoblasts, Cardiac/immunology , Protein Processing, Post-Translational
19.
JCI Insight ; 2(8)2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28422757

ABSTRACT

Zika virus (ZIKV) infections have been linked with neurological complications and congenital Zika syndrome. Given the high level of homology between ZIKV and the related flavivirus dengue virus (DENV), we investigated the level of cross-reactivity with ZIKV using a panel of DENV human mAbs. A majority of the mAbs showed binding to ZIKV virions, with several exhibiting neutralizing capacities against ZIKV in vitro. Three of the best ZIKV-neutralizing mAbs were found to recognize diverse epitopes on the envelope (E) glycoprotein: the highly conserved fusion-loop peptide, a conformation-specific epitope on the E monomer, and a quaternary epitope on the virion surface. The most potent ZIKV-neutralizing mAb (SIgN-3C) was assessed in 2 type I interferon receptor-deficient (IFNAR-/-) mouse models of ZIKV infection. Treatment of adult nonpregnant mice with SIgN-3C rescued mice from virus-induced weight loss and mortality. The SIgN-3C variant with Leu-to-Ala mutations in the Fc region (SIgN-3C-LALA) did not induce antibody-dependent enhancement (ADE) in vitro but provided similar levels of protection in vivo. In pregnant ZIKV-infected IFNAR-/- mice, treatment with SIgN-3C or SIgN-3C-LALA significantly reduced viral load in the fetal organs and placenta and abrogated virus-induced fetal growth retardation. Therefore, SIgN-3C-LALA holds promise as a ZIKV prophylactic and therapeutic agent.

20.
J Biol Chem ; 292(15): 6163-6176, 2017 04 14.
Article in English | MEDLINE | ID: mdl-28167527

ABSTRACT

Cancer-specific glycans of ovarian cancer are promising epitopes for targeting with monoclonal antibodies (mAb). Despite their potential, structural characterization of these glycan epitopes remains a significant challenge in mAb preclinical development. Our group generated the monoclonal antibody mAb-A4 against human embryonic stem cells (hESC), which also bound specifically to N-glycans present on 11 of 19 ovarian cancer (OC) and 8 of 14 breast cancer cell lines tested. Normal cell lines and tissue were unstained by mAb-A4. To characterize the N-linked glycan epitopes on OC cell lines targeted by mAb-A4, we used glycosidases, glycan microarray, siRNA, and advanced high sensitivity matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The mAb-A4 epitopes were found to be Fucα1-2Galß1-3GlcNAcß (H type 1) and Galß1-3GlcNAcß (type 1 LacNAc). These structures were found to be present on multiple proteins from hESC and OC. Importantly, endo-ß-galactosidase coupled with MALDI-MS allowed these two epitopes, for the first time, to be directly identified on the polylactosamines of N-glycans of SKOV3, IGROV1, OV90, and OVCA433. Furthermore, siRNA knockdown of B3GALT5 expression in SKOV3 demonstrated that mAb-A4 binding was dependent on B3GALT5, providing orthogonal evidence of the epitopes' structures. The recognition of oncofetal H type 1 and type 1 LacNAc on OC by mAb-A4 is a novel and promising way to target OC and supports the theory that cancer can acquire stem-like phenotypes. We propose that the orthogonal framework used in this work could be the basis for advancing anti-glycan mAb characterization.


Subject(s)
Amino Sugars/immunology , Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Neoplasm/immunology , Antigens, Neoplasm/immunology , Epitopes/immunology , Neoplastic Stem Cells/immunology , Ovarian Neoplasms/immunology , Breast Neoplasms/immunology , Cell Line, Tumor , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...