Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell Toxicol ; 19(1): 13-25, 2023.
Article in English | MEDLINE | ID: mdl-36157379

ABSTRACT

Background: Since the Covid-19 pandemic in 2019, the use of plastics has increased exponentially, so it is imperative to manage and dispose of these plastic wastes safely. Objectives: This review focuses on the management strategies governed by the policies of each country to reduce plastic waste through physical collection methods and methods that use eco-imitation technologies. Results: Thus far, physical treatment methods have been applied to sewage and drinking water treatment. The abilities of bio-inspired treatment methods are being assessed in terms of capturing microplastics (MPs) and nanoplastics (NPs), extracting substances from marine organisms, reducing toxicity, and developing alternatives to petroleum-based plastics. Conclusions: Various post-treatment methods have been proposed to collect and remove MPs and NPs that have reached into aquatic ecosystems and subsequently reduce their toxicity. However, there are limitations that the effectiveness of these methods is hindered by the lack of policies governing the entire process of plastic use before the post-treatment. Purpose of Review: We purpose to reduce plastic waste through methods that use eco-imitation technologies. Recent Findings: These eco-imitation methods are attracting attention as viable future plastic waste treatment options in line with the goals of sustainable development.

2.
Phytochemistry ; 64(3): 725-34, 2003 Oct.
Article in English | MEDLINE | ID: mdl-13679095

ABSTRACT

Marine algae produce volatile halocarbons, which have an ozone-depleting potential. The formation of these compounds is thought to be related to oxidative stress, involving H2O2 and algal peroxidases. In our study we found strong correlations between the releases of H2O2 and brominated and some iodinated compounds to the seawater medium, but no such correlation was found for CHCl3, suggesting the involvement of other formation mechanisms as well. Little is known about the effects of environmental factors on the production of volatile halocarbons by algae and in the present study we focused on the influence of temperature. Algae were sampled in an area of the brackish Baltic Sea that receives thermal discharge, allowing us to collect specimens of the same species that were adapted to different field temperature regimes. We exposed six algal species (the diatom Pleurosira laevis, the brown alga Fucus vesiculosus and four filamentous green algae, Cladophora glomerata, Enteromorpha ahlneriana, E. flexuosa and E. intestinalis) to temperature changes of 0-11 degrees C under high irradiation to invoke oxidative stress. The production rates, as well as the quantitative composition of 16 volatile halocarbons, were strongly species-dependent and different types of responses to temperature were recorded. However, no response patterns to temperature change were found that were consistent for all species or for all halocarbons. We conclude that the production of certain halocarbons may increase with temperature in certain algal species, but that the amount and composition of the volatile halocarbons released by algal communities are probably more affected by temperature-associated species shifts. These results may have implications for climatic change scenarios.


Subject(s)
Eukaryota/metabolism , Hydrocarbons, Halogenated/metabolism , Hydrogen Peroxide/metabolism , Eukaryota/growth & development , Hydrocarbons, Halogenated/analysis , Principal Component Analysis , Regression Analysis , Seawater , Species Specificity , Temperature , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL