Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Med ; 24(1): 90, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683232

ABSTRACT

Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the rapid proliferation of malignant plasma cells within the bone marrow. Standard therapies often fail due to patient resistance. The US FDA has approved second-generation chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (anti-BCMA-CAR2 T cells) for MM treatment. However, achieving enduring clinical responses remains a challenge in CAR T cell therapy. This study developed third-generation T cells with an anti-BCMA CAR (anti-BCMA-CAR3). The CAR incorporated a fully human scFv specific to BCMA, linked to the CD8 hinge region. The design included the CD28 transmembrane domain, two co-stimulatory domains (CD28 and 4-1BB), and the CD3ζ signaling domain (28BBζ). Lentiviral technology generated these modified T cells, which were compared against anti-BCMA-CAR2 T cells for efficacy against cancer. Anti-BCMA-CAR3 T cells exhibited significantly higher cytotoxic activity against BCMA-expressing cells (KMS-12-PE and NCI-H929) compared to anti-BCMA-CAR2 T cells. At an effector-to-target ratio of 10:1, anti-BCMA-CAR3 T cells induced lysis in 75.5 ± 3.8% of NCI-H929 cells, whereas anti-BCMA-CAR2 T cells achieved 56.7 ± 3.4% (p = 0.0023). Notably, after twelve days of cultivation, anti-BCMA-CAR3 T cells nearly eradicated BCMA-positive cells (4.1 ± 2.1%), while anti-BCMA-CAR2 T cells allowed 36.8 ± 20.1% to survive. This study highlights the superior efficacy of anti-BCMA-CAR3 T cells against both low and high BCMA-expressing MM cells, surpassing anti-BCMA-CAR2 T cells. These findings suggest potential for advancing anti-BCMA-CAR3 T cells in chimeric antigen receptor T (CAR-T) therapy for relapsed/refractory MM.


Subject(s)
B-Cell Maturation Antigen , Immunotherapy, Adoptive , Multiple Myeloma , Receptors, Chimeric Antigen , T-Lymphocytes , Multiple Myeloma/therapy , Multiple Myeloma/immunology , B-Cell Maturation Antigen/immunology , Humans , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Cell Line, Tumor , T-Lymphocytes/immunology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/genetics , Animals
2.
Int Immunopharmacol ; 113(Pt B): 109442, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36435066

ABSTRACT

Adoptive T cell therapy using second-generation anti-CD19 chimeric antigen receptor T cells (anti-CD19-CAR2-T) induced complete remission in many heavily pretreated patients with B cell acute lymphoblastic leukemia (B-ALL) or diffuse large B cell lymphoma (DLBCL). However, poor clinical efficacy was observed in treating aggressive B cell lymphomas (BCL). The limited T cell function was reported by programmed cell death protein 1 ligand (PD-L1) expressed on BCL cells bound to the PD-1 receptor on T cells. To overcome this problem, we generated anti-CD19-CAR4-T cells secreting anti-PD-L1 single-chain variable fragment (scFv), namely anti-CD19-CAR5-T cells, and evaluated their functions in vitro. Both anti-CD19-CAR-T cells contain an anti-CD19 scFv derived from a monoclonal antibody, FMC63, linked to CD28/4-1BB/CD27/CD3ζ. The secreting anti-PD-L1 scFv is derived from atezolizumab. Our results showed that secreted anti-PD-L1 scFv could bind to PD-L1 and block the binding of anti-PD-L1 monoclonal antibodies on PD-L1high tumor cells. Anti-CD19-CAR4-T and anti-CD19-CAR5-T cells efficiently killed CD19+ target tumor cells in two-dimensional (2D) and three-dimensional (3D) co-culture systems. However, anti-CD19-CAR5-T cells demonstrated superior proliferative ability. Interestingly, at a low effector (E) to target (T) ratio of 0.5:1, anti-CD19-CAR5-T cells showed higher cytotoxicity against CD19+/PD-L1high cells compared to that of anti-CD19-CAR4-T cells. The cytotoxicity of anti-CD19-CAR4-T cells against CD19+/PD-L1high could be restored by adding anti-PD-L1 scFv. Our findings demonstrate the combination antitumor efficiency of anti-CD19-CAR4-T cells and anti-PD-L1 scFv against CD19+/PD-L1high tumors. As such, anti-CD19-CAR5-T cells should be further investigated in vivo antitumor efficiency and clinical trials as a treatment for aggressive B cell lymphoma.


Subject(s)
Receptors, Chimeric Antigen , Single-Chain Antibodies , Humans , Single-Chain Antibodies/therapeutic use , Ligands , T-Lymphocytes , Antigens, CD19 , Adaptor Proteins, Signal Transducing
3.
Sci Rep ; 12(1): 16088, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36168031

ABSTRACT

Severe dengue virus (DENV) infection results from viral replication and dysregulated host immune response, which trigger massive cytokine production/cytokine storm. The result is severe vascular leakage, hemorrhagic diathesis, and organ dysfunction. Subsequent to previously proposing that an ideal drug for treatment of DENV infection should efficiently inhibit both virus production and cytokine storm, we discovered that α-mangostin (α-MG) from the pericarp of the mangosteen fruit could inhibit both DENV infection and cytokine/chemokine production. In this study, we investigated the molecular mechanisms underlying the antiviral and anti-inflammatory effects of α-MG. Time-of-drug-addition and time-of-drug-elimination studies suggested that α-MG inhibits the replication step of the DENV life cycle. α-MG inhibited polymerization activity of RNA-dependent RNA polymerase (RdRp) with IC50 values of 16.50 µM and significantly reduced viral RNA and protein syntheses, and virion production. Antiviral and cytokine/chemokine gene expression profiles of α-MG-treated DENV-2-infected cells were investigated by polymerase chain reaction array. α-MG suppressed the expression of 37 antiviral and cytokine/chemokine genes that relate to the NF-κB signaling pathway. Immunofluorescence and immunoblot analyses revealed that α-MG inhibits NF-κB nuclear translocation in DENV-2-infected cells in association with reduced RANTES, IP-10, TNF-α, and IL-6 production. These results suggest α-MG as a potential treatment for DENV infection.


Subject(s)
Dengue Virus , Dengue , Virus Diseases , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chemokine CCL5 , Chemokine CXCL10 , Cytokine Release Syndrome , Cytokines/metabolism , Dengue/drug therapy , Dengue Virus/physiology , Humans , Inflammation/drug therapy , Interleukin-6/pharmacology , NF-kappa B/metabolism , RNA, Viral , RNA-Dependent RNA Polymerase , Tumor Necrosis Factor-alpha/metabolism , Virus Diseases/drug therapy , Virus Replication , Xanthones
4.
PLoS One ; 17(3): e0265773, 2022.
Article in English | MEDLINE | ID: mdl-35312724

ABSTRACT

Cholangiocarcinoma (CCA) is a lethal cancer of bile duct epithelial cells with a high mortality rate and limited therapeutic options. An effective treatment is, therefore, urgently needed to improve treatment outcomes for these patients. To develop a new therapeutic option, we engineered T cells secreting αCD133-αCD3 bispecific T-cell engager and evaluated their antitumor effects against CD133-expressing CCA cells. The cDNA encoding αCD133-αCD3 bispecific T-cell engager (αCD133-αCD3-ENG) was cloned into pCDH lentiviral construct and its expression was tested in Lenti-X 293T cells. T cells from healthy donors were then transduced with engineered lentiviruses to create T cells secreting αCD133-αCD3 engager to evaluate their antitumor activities. The average transduction efficiency into T cells was approximately 60.03±21.65%. In the co-culture system containing T cells secreting αCD133-αCD3 engager (as effector cells) and mWasabi-luciferase-expressing CCA cells (KKU-100 and KKU-213A; as target cells), the effector T cells exhibited significantly higher cytolytic activities against the target CCA cells (49.0±9.76% and 64.10±13.18%, respectively) than those observed against the untransduced T cells (10.97±10.65%; p = 0.0103 and 9.80±11.05%; p = 0.0054) at an effector-to-target ratio of 5:1. In addition, the secreted αCD133-αCD3 engager significantly redirected both transduced T cells and bystander T cells to kill the target CCA cells (up to 73.20±1.68%; p<0.05). Moreover, the transduced and bystander T cells could kill the target CCA spheroids at a rate approximately 5-fold higher than that of the no treatment control condition (p = 0.0011). Our findings demonstrate proof-of-principle that T cells secreting αCD133-αCD3 engager can be an alternative approach to treating CD133-positive CCA, and they pave the way for future in vivo study and clinical trials.


Subject(s)
Antibodies, Bispecific , Bile Duct Neoplasms , Cholangiocarcinoma , Antibodies, Bispecific/metabolism , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Cell Line, Tumor , Cholangiocarcinoma/pathology , Coculture Techniques , Humans , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...