Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mod Pathol ; 30(7): 952-963, 2017 07.
Article in English | MEDLINE | ID: mdl-28338653

ABSTRACT

The spectrum of genomic alterations in ductal carcinoma in situ (DCIS) is relatively unexplored, but is likely to provide useful insights into its biology, its progression to invasive carcinoma and the risk of recurrence. DCIS (n=20) with a range of phenotypes was assessed by massively parallel sequencing for mutations and copy number alterations and variants validated by Sanger sequencing. PIK3CA mutations were identified in 11/20 (55%), TP53 mutations in 6/20 (30%), and GATA3 mutations in 9/20 (45%). Screening an additional 91 cases for GATA3 mutations identified a final frequency of 27% (30/111), with a high proportion of missense variants (8/30). TP53 mutations were exclusive to high grade DCIS and more frequent in PR-negative tumors compared with PR-positive tumors (P=0.037). TP53 mutant tumors also had a significantly higher fraction of the genome altered by copy number than wild-type tumors (P=0.005), including a significant positive association with amplification or gain of ERBB2 (P<0.05). The association between TP53 mutation and ERBB2 amplification was confirmed in a wider DCIS cohort using p53 immunohistochemistry as a surrogate marker for TP53 mutations (P=0.03). RUNX1 mutations and MAP2K4 copy number loss were novel findings in DCIS. Frequent copy number alterations included gains on 1q, 8q, 17q, and 20q and losses on 8p, 11q, 16q, and 17p. Patterns of genomic alterations observed in DCIS were similar to those previously reported for invasive breast cancers, with all DCIS having at least one bona fide breast cancer driver event. However, an increase in GATA3 mutations and fewer copy number changes were noted in DCIS compared with invasive carcinomas. The role of such alterations as prognostic and predictive biomarkers in DCIS is an avenue for further investigation.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Mutation , Adult , Aged , Aged, 80 and over , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , DNA Copy Number Variations , Female , GATA3 Transcription Factor/genetics , Humans , Middle Aged , Receptor, ErbB-2/genetics , Tumor Suppressor Protein p53/genetics
2.
Neoplasia ; 10(11): 1253-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18953434

ABSTRACT

Chromodomain, helicase, DNA binding 5 (CHD5) is a member of a subclass of the chromatin remodeling Swi/Snf proteins and has recently been proposed as a tumor suppressor in a diverse range of human cancers. We analyzed all 41 coding exons of CHD5 for somatic mutations in 123 primary ovarian cancers as well as 60 primary breast cancers using high-resolution melt analysis. We also examined methylation of the CHD5 promoter in 48 ovarian cancer samples by methylation-specific single-stranded conformation polymorphism and bisulfite sequencing. In contrast to previous studies, no mutations were identified in the breast cancers, but somatic heterozygous missense mutations were identified in 3 of 123 ovarian cancers. We identified promoter methylation in 3 of 45 samples with normal CHD5 and in 2 of 3 samples with CHD5 mutation, suggesting these tumors may have biallelic inactivation of CHD5. Hemizygous copy number loss at CHD5 occurred in 6 of 85 samples as assessed by single nucleotide polymorphism array. Tumors with CHD5 mutation or methylation were more likely to have mutation of KRAS or BRAF (P = .04). The aggregate frequency of CHD5 haploinsufficiency or inactivation is 16.2% in ovarian cancer. Thus, CHD5 may play a role as a tumor suppressor gene in ovarian cancer; however, it is likely that there is another target of the frequent copy number neutral loss of heterozygosity observed at 1p36.


Subject(s)
DNA Helicases/genetics , DNA Methylation , Mutation , Nerve Tissue Proteins/genetics , Ovarian Neoplasms/genetics , CpG Islands , DNA Mutational Analysis , Female , Gene Dosage , Genes, Tumor Suppressor , Humans , Oligonucleotide Array Sequence Analysis , Ovarian Neoplasms/metabolism , Polymorphism, Genetic , Polymorphism, Single-Stranded Conformational , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras) , Reverse Transcriptase Polymerase Chain Reaction , ras Proteins/genetics , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...