Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35746330

ABSTRACT

Most of the existing methods focus mainly on the extraction of shape-based, rotation-based, and motion-based features, usually neglecting the relationship between hands and body parts, which can provide significant information to address the problem of similar sign words based on the backhand approach. Therefore, this paper proposes four feature-based models. The spatial-temporal body parts and hand relationship patterns are the main feature. The second model consists of the spatial-temporal finger joint angle patterns. The third model consists of the spatial-temporal 3D hand motion trajectory patterns. The fourth model consists of the spatial-temporal double-hand relationship patterns. Then, a two-layer bidirectional long short-term memory method is used to deal with time-independent data as a classifier. The performance of the method was evaluated and compared with the existing works using 26 ASL letters, with an accuracy and F1-score of 97.34% and 97.36%, respectively. The method was further evaluated using 40 double-hand ASL words and achieved an accuracy and F1-score of 98.52% and 98.54%, respectively. The results demonstrated that the proposed method outperformed the existing works under consideration. However, in the analysis of 72 new ASL words, including single- and double-hand words from 10 participants, the accuracy and F1-score were approximately 96.99% and 97.00%, respectively.


Subject(s)
Human Body , Sign Language , Hand , Humans , Motion , United States
2.
Sensors (Basel) ; 22(12)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35746415

ABSTRACT

Wearing a facial mask is indispensable in the COVID-19 pandemic; however, it has tremendous effects on the performance of existing facial emotion recognition approaches. In this paper, we propose a feature vector technique comprising three main steps to recognize emotions from facial mask images. First, a synthetic mask is used to cover the facial input image. With only the upper part of the image showing, and including only the eyes, eyebrows, a portion of the bridge of the nose, and the forehead, the boundary and regional representation technique is applied. Second, a feature extraction technique based on our proposed rapid landmark detection method employing the infinity shape is utilized to flexibly extract a set of feature vectors that can effectively indicate the characteristics of the partially occluded masked face. Finally, those features, including the location of the detected landmarks and the Histograms of the Oriented Gradients, are brought into the classification process by adopting CNN and LSTM; the experimental results are then evaluated using images from the CK+ and RAF-DB data sets. As the result, our proposed method outperforms existing cutting-edge approaches and demonstrates better performance, achieving 99.30% and 95.58% accuracy on CK+ and RAF-DB, respectively.


Subject(s)
COVID-19 , Facial Recognition , Algorithms , Emotions , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...