Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 15(7): 1568-79, 2016 07.
Article in English | MEDLINE | ID: mdl-27196782

ABSTRACT

The MET receptor tyrosine kinase is involved in cell growth, survival, and invasion. Clinical studies with small molecule MET inhibitors have shown the role of biomarkers in identifying patients most likely to benefit from MET-targeted therapy. AMG 337 is an oral, small molecule, ATP-competitive, highly selective inhibitor of the MET receptor. Herein, we describe AMG 337 preclinical activity and mechanism of action in MET-dependent tumor models. These studies suggest MET is the only therapeutic target for AMG 337. In an unbiased tumor cell line proliferation screen (260 cell lines), a closely related analogue of AMG 337, Compound 5, exhibited activity in 2 of 260 cell lines; both were MET-amplified. Additional studies examining the effects of AMG 337 on the proliferation of a limited panel of cell lines with varying MET copy numbers revealed that high-level focal MET amplification (>12 copies) was required to confer MET oncogene addiction and AMG 337 sensitivity. One MET-amplified cell line, H1573 (>12 copies), was AMG 337 insensitive, possibly because of a downstream G12A KRAS mutation. Mechanism-of-action studies in sensitive MET-amplified cell lines demonstrated that AMG 337 inhibited MET and adaptor protein Gab-1 phosphorylation, subsequently blocking the downstream PI3K and MAPK pathways. AMG 337 exhibited potency in pharmacodynamic assays evaluating MET signaling in tumor xenograft models; >90% inhibition of Gab-1 phosphorylation was observed at 0.75 mg/kg. These findings describe the preclinical activity and mechanism of action of AMG 337 in MET-dependent tumor models and indicate its potential as a novel therapeutic for the treatment of MET-dependent tumors. Mol Cancer Ther; 15(7); 1568-79. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Gene Amplification , Humans , MAP Kinase Signaling System/drug effects , Mice , Necrosis , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
2.
J Med Chem ; 55(14): 6523-40, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22734674

ABSTRACT

A class of 2-acyliminobenzimidazoles has been developed as potent and selective inhibitors of anaplastic lymphoma kinase (ALK). Structure based design facilitated the rapid development of structure-activity relationships (SAR) and the optimization of kinase selectivity. Introduction of an optimally placed polar substituent was key to solving issues of metabolic stability and led to the development of potent, selective, orally bioavailable ALK inhibitors. Compound 49 achieved substantial tumor regression in an NPM-ALK driven murine tumor xenograft model when dosed qd. Compounds 36 and 49 show favorable potency and PK characteristics in preclinical species indicative of suitability for further development.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Administration, Oral , Anaplastic Lymphoma Kinase , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Biological Availability , Cell Line, Tumor , Drug Stability , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Inhibitory Concentration 50 , Microsomes, Liver/metabolism , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Rats , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Protein-Tyrosine Kinases/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...