Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Annu Rev Anal Chem (Palo Alto Calif) ; 13(1): 453-474, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32176531

ABSTRACT

The National Institute of Standards and Technology (NIST), formerly the National Bureau of Standards, was established by the US Congress in 1901 and charged with establishing a measurement foundation to facilitate US and international commerce. This broad language provides NIST with the ability to establish and implement its programs in response to changes in national needs and priorities. This review traces some of the changes in NIST's reference material programs over time and presents the NIST Material Measurement Laboratory's current approach to promoting accuracy and metrological traceability of chemical measurements and validation of chemical measurement processes.

2.
Cytometry A ; 85(11): 978-85, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25132217

ABSTRACT

Widefield fluorescence microscopy is a highly used tool for visually assessing biological samples and for quantifying cell responses. Despite its widespread use in high content analysis and other imaging applications, few published methods exist for evaluating and benchmarking the analytical performance of a microscope. Easy-to-use benchmarking methods would facilitate the use of fluorescence imaging as a quantitative analytical tool in research applications, and would aid the determination of instrumental method validation for commercial product development applications. We describe and evaluate an automated method to characterize a fluorescence imaging system's performance by benchmarking the detection threshold, saturation, and linear dynamic range to a reference material. The benchmarking procedure is demonstrated using two different materials as the reference material, uranyl-ion-doped glass and Schott 475 GG filter glass. Both are suitable candidate reference materials that are homogeneously fluorescent and highly photostable, and the Schott 475 GG filter glass is currently commercially available. In addition to benchmarking the analytical performance, we also demonstrate that the reference materials provide for accurate day to day intensity calibration. Published 2014 Wiley Periodicals Inc.


Subject(s)
Benchmarking , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Automation , Calibration , Flow Cytometry
3.
J Air Waste Manag Assoc ; 63(5): 565-74, 2013 May.
Article in English | MEDLINE | ID: mdl-23786148

ABSTRACT

UNLABELLED: Ambient ozone measurements in the United States and many other countries are traceable to a National Institute of Standards and Technology Standard Reference Photometer (NIST SRP). The NIST SRP serves as the highest level ozone reference standard in the United States, with NIST SRPs located at NIST and at many U.S. Environmental Protection Agency (EPA) laboratories. The International Bureau of Weights and Measures (BIPM) maintains a NIST SRP as the reference standard for international measurement comparability through the International Committee of Weights and Measures (CIPM). In total, there are currently NIST SRPs located in 20 countries for use as an ozone reference standard. A detailed examination of the NIST SRP by the BIPM and NIST has revealed a temperature gradient and optical path-length bias inherent in all NIST SRPs. A temperature gradient along the absorption cells causes incorrect temperature measurements by as much as 2 degrees C. Additionally, the temperature probe used for temperature measurements was found to inaccurately measure the temperature of the sample gas due to a self-heating effect. Multiple internal reflections within the absorption cells produce an actual path length longer than the measured fixed length used in the calculations for ozone mole fractions. Reflections from optical filters located at the exit of the absorption cells add to this effect. Because all NIST SRPs are essentially identical, the temperature and path-length biases exist on all units by varying amounts dependent upon instrument settings, laboratory conditions, and absorption cell window alignment. This paper will discuss the cause of and physical modifications for reducing these measurement biases in NIST SRPs. Results from actual NIST SRP bias upgrades quantifying the effects of these measurement biases on ozone measurements are summarized. IMPLICATIONS: NIST SRPs are maintained in laboratories around the world underpinning ozone measurement calibration and traceability within and between countries. The work described in this paper quantifies and shows the reduction of instrument biases in NIST SRPs improving their overall agreement. This improved agreement in all NIST SRPs provides a more stable baseline for ozone measurements worldwide.


Subject(s)
Air Pollution/prevention & control , Air Pollution/statistics & numerical data , Environmental Monitoring/standards , Ozone/standards , Temperature , United States Environmental Protection Agency/standards , Algorithms , Calibration/standards , Environmental Monitoring/instrumentation , Optical Phenomena , Reference Standards , Selection Bias , United States
4.
Appl Spectrosc ; 65(6): 665-77, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21639989

ABSTRACT

A variety of data smoothing techniques exist to address the issue of noise in spectroscopic data. The vast majority, however, require parameter specification by a knowledgeable user, which is typically accomplished by trial and error. In most situations, optimized parameters represent a compromise between noise reduction and signal preservation. In this work, we demonstrate a nonparametric regression approach to spectral smoothing using a spatially adaptive penalized least squares (SAPLS) approach. An iterative optimization procedure is employed that permits gradual flexibility in the smooth fit when statistically significant trends based on multiscale statistics assuming white Gaussian noise are detected. With an estimate of the noise level in the spectrum the procedure is fully automatic with a specified confidence level for the statistics. Potential application to the heteroscedastic noise case is also demonstrated. Performance was assessed in simulations conducted on several synthetic spectra using traditional error measures as well as comparisons of local extrema in the resulting smoothed signals to those in the true spectra. For the simulated spectra, a best case comparison with the Savitzky-Golay smoothing via an exhaustive parameter search was performed while the SAPLS method was assessed for automated application. The application to several dissimilar experimentally obtained Raman spectra is also presented.


Subject(s)
Least-Squares Analysis , Signal Processing, Computer-Assisted , Spectrum Analysis, Raman/methods , Algorithms , Bacillus cereus/chemistry , Computer Simulation , Poisson Distribution , Statistics, Nonparametric
5.
Biotechniques ; 45(2): 143-4, 148, 150 passim, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18687063

ABSTRACT

As a critical component of any microarray experiment, scanner performance has the potential to contribute variability and bias, the magnitude of which is usually not quantified. Using Standard Reference Material (SRM) 2,242, which is certified for Raman spectral correction, for monitoring the microarray fluorescence at the two most commonly used wavelengths, our team at the National Institute of Standards and Technology (NIST) has developed a method to establish scanner performance, qualifying signal measurement in microarray experiments. SRM 2,242 exhibits the necessary photostability at the excitation wavelengths of 635 nm and 532 nm, which allows scanner signal stability monitoring, although it is not certified for use in this capacity. In the current study, instrument response was tracked day to day, confirming that changes observed in experimental arrays scanned are not due to changes in the scanner response. Signal intensity and signal-to-noise ratio (S/N) were tracked over time on three different scanners, indicating the utility of the SRM for scanner qualification.


Subject(s)
Oligonucleotide Array Sequence Analysis/instrumentation , Oligonucleotide Array Sequence Analysis/standards , Spectrum Analysis, Raman/standards , Reference Standards
6.
Appl Spectrosc ; 61(7): 694-700, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17697462

ABSTRACT

The relative intensity correction of Raman spectra requires the measurement of a source of known relative irradiance. Raman spectrometers that employ two-dimensional charge-coupled device (CCD) array detectors may be operated in two distinct modes. One mode directly measures the counts in each CCD pixel, but more commonly for the collection of spectra, the counts in the CCD row pixels are summed for a given column. If distortions in the corrected spectral shapes are to be avoided, operation in the mode where rows are summed places restrictions on the spatial intensity profile of the source of known irradiance that is used for the relative intensity correction procedure and, in some cases, also on the spatial intensity profile of the measured Raman light. Numerical expressions are given from which these restrictions can be derived. Magnitudes of distortions that can arise when intensity-correcting spectra obtained with CCD data where rows in a column are summed are estimated by modeling different cases. Data are given showing the inherent pixel quantum efficiency variation that exists in CCDs. Spectra are given showing the effects of a local area of significant change in pixel quantum efficiency that was found to be present on one CCD detector.

7.
Appl Spectrosc ; 61(2): 117-29, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17331302

ABSTRACT

Standard Reference Materials SRMs 2241 through 2243 are certified spectroscopic standards intended for the correction of the relative intensity of Raman spectra obtained with instruments employing laser excitation wavelengths of 785 nm, 532 nm, or 488 nm/514.5 nm. These SRMs each consist of an optical glass that emits a broadband luminescence spectrum when illuminated with the Raman excitation laser. The shape of the luminescence spectrum is described by a polynomial expression that relates the relative spectral intensity to the Raman shift with units in wavenumber (cm(-1)). This polynomial, together with a measurement of the luminescence spectrum of the standard, can be used to determine the spectral intensity-response correction, which is unique to each Raman system. The resulting instrument intensity-response correction may then be used to obtain Raman spectra that are corrected for a number of, but not all, instrument-dependent artifacts. Peak area ratios of the intensity-corrected Raman spectrum of cyclohexane are presented as an example of a methodology to validate the spectral intensity calibration process and to illustrate variations that can occur in this measurement.

8.
Appl Spectrosc ; 59(4): 496-504, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15901335

ABSTRACT

Standard Reference Material 2036 (SRM 2036) is a certified transfer standard intended for the verification and calibration of the wavelength/wavenumber scale of near-infrared (NIR) spectrometers operating in diffuse or trans-reflectance mode. SRM 2036 Near-Infrared Wavelength/Wavenumber Reflection Standard is a combination of a rare earth oxide glass of a composition similar to that of SRM 2035 Near-Infrared Transmission Wavelength/Wavenumber Standard and SRM 2065 Ultraviolet-Visible-Near-Infrared Transmission Wavelength/Wavenumber Standard, but is in physical contact with a piece of sintered poly(tetrafluoroethylene) (PTFE). The combination of glass contacted with a nearly ideal diffusely reflecting backing provides reflection-absorption bands that range from 15% R to 40% R. SRM 2036 is certified for the 10% band fraction air wavelength centroid location, (10%)B, of seven bands spanning the spectral region from 975 nm to 1946 nm. It is also certified for the vacuum wavenumber (10%)B of the same seven bands in the spectral region from 10 300 cm(-1) to 5130 cm(-1) at 8 cm(-1) resolution. Informational values are provided for the locations of thirteen additional bands from 334 nm to 804 nm.


Subject(s)
Fiber Optic Technology/instrumentation , Fiber Optic Technology/standards , Guidelines as Topic , Polytetrafluoroethylene/analysis , Polytetrafluoroethylene/standards , Spectroscopy, Fourier Transform Infrared/instrumentation , Spectroscopy, Fourier Transform Infrared/standards , Polytetrafluoroethylene/chemistry , Reference Standards , Reference Values , Refractometry/instrumentation , Refractometry/standards , Reproducibility of Results , Sensitivity and Specificity
9.
Anal Chem ; 75(4): 961-6, 2003 Feb 15.
Article in English | MEDLINE | ID: mdl-12622392

ABSTRACT

Quantitative descriptions of the location of seven near-infrared absorption bands as functions of temperature 5-50 degrees C are presented here for three recently introduced wavelength/wavenumber Standard Reference Materials (SRMs): SRM 2035, SRM 2065, and SRM 2036. For all bands in all three SRMs, locations are well described as linear models parametrized with the location at 0 degrees C (intercept) and the rate of location change per degrees C (slope). Since these materials were produced from compositionally similar melts, the slopes for each band are identical within measurement imprecision in all three SRMs; only minor differences are observed in the intercepts. Because the direction of change in location differs among the bands, it is possible to use the measured band locations to reliably estimate sample temperature. Two approaches to estimating temperature are evaluated: slope and measurement uncertainty-weighted means. While both methods work well with measurements made under well-characterized and stable environmental conditions, the more complex uncertainty-weighted analysis becomes relatively more predictive as the total measurement uncertainties increase.

SELECTION OF CITATIONS
SEARCH DETAIL
...