Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 44(22): 5442-5445, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31730078

ABSTRACT

We report on direct large signal modulation and the reliability studies of microdisk lasers based on InGaAs/GaAs quantum well-dots. A 23 µm in diameter microlaser exhibits an open eye diagram up to 12.5 Gbit/s and is capable of error-free 10 Gbit/s data transmission at 30°C without temperature stabilization. The ageing tests of a 31 µm in diameter microdisk laser were conducted at room and elevated temperatures during more than 1200 hr. The average rate of the output power degradation was about 25 and 29 nW/hr at 40°C and 60°C, respectively.

2.
Appl Opt ; 55(11): 3051-7, 2016 Apr 10.
Article in English | MEDLINE | ID: mdl-27139874

ABSTRACT

In this paper, we demonstrate a comprehensive analysis of the impact of four-wave mixing (FWM) on the quality of transmission in short- and medium-range dense wavelength division multiplexing (DWDM) systems in the 1310 nm wavelength domain. The presented analysis proves that, for the system with uniform power per channel assignment, setting proper input channel power can substantially reduce the influence of the FWM effect on bit error rate in low channel spaced short-range systems, despite the position of the DWDM grid around the zero-dispersion wavelength. Simulations and experimental analysis of the possibility of FWM suppression have been provided. The power penalty measurements show that the influence of FWM on system performance may be as low as 0.3 dB with reasonable input power (i.e., -11 dBm per channel), making possible the transmission of data by fiber over distances of 25 km. Finally, we demonstrate that, for channel spacing as low as 120 GHz, error-free transmission in the 1310 nm wavelength domain is possible, despite high efficiency of FWM generation. The results prove that utilization of the 1310 nm wavelength domain in a system with low channel spacing, i.e., with better bandwidth allocation, is an interesting solution for data storage and processing center applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...