Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Mol Cell Endocrinol ; 589: 112237, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38599276

ABSTRACT

The molecular basis of mullerian aplasia, also known as Mayer-Rokitansky-Kuster Hauser (MRKH) or congenital absence of the uterus and vagina, is largely unknown. We applied a multifaceted genetic approach to studying the pathogenesis of MRKH including exome sequencing of trios and duos, genome sequencing of families, qPCR, RT-PCR, and Sanger sequencing to detect intragenic deletions, insertions, splice variants, single nucleotide variants, and rearrangements in 132 persons with MRKH. We identified two heterozygous variants in ZNHIT3 localized to a commonly involved CNV region at chromosome 17q12 in two different families with MRKH. One is a frameshift, truncating variant that is predicted to interfere with steroid hormone binding of the LxxLL sequence of the C-terminal region. The second variant is a double missense/stopgain variant. Both variants impair protein expression in vitro. In addition, four more probands with MRKH harbored the stopgain variant without the nearby missense variant. In total, 6/132 (4.5%) of patients studied, including five with associated anomalies (type 2 MRKH), had ZNHIT3 variants that impair function in vitro. Our findings implicate ZNHIT3 as an important gene associated with MRKH within the 17q12 CNV region.


Subject(s)
46, XX Disorders of Sex Development , Chromosomes, Human, Pair 17 , Congenital Abnormalities , Heterozygote , Mullerian Ducts , Adolescent , Adult , Female , Humans , 46, XX Disorders of Sex Development/genetics , Chromosomes, Human, Pair 17/genetics , Congenital Abnormalities/genetics , Mullerian Ducts/abnormalities , Pedigree
2.
F S Sci ; 4(4): 286-293, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37516276

ABSTRACT

OBJECTIVE: To study if a pituitary or ovarian defect contributes to subfertility of the female Nsmf knockout (KO) mouse, an animal model of the hypogonadotropic hypogonadism gene NSMF. DESIGN: Analysis of hypothalamic, pituitary and ovarian gene expression at baseline, serum gonadotropin levels before and after gonadotropin-releasing hormone (GnRH) stimulation, ovarian response and implantation after superovulation, gonadotropin effects after ovariectomy, and ovarian NSMF protein expression. SETTING: University research laboratory. PATIENTS: None; mice were used. INTERVENTIONS: Gonadotropin-releasing hormone stimulation, superovulation, and ovariectomy in separate experiments. MAIN OUTCOME MEASURES: Gene expression in the hypothalamus, pituitary, and ovary; ovarian response and implantation after superovulation; serum gonadotropins after GnRH stimulation and ovariectomy; Western blot to measure ovarian NSMF expression. RESULTS: We found increased hypothalamic Kiss1, Gnrh1, and Jak2 mRNA expression in female Nsmf KO vs. wild type (WT) mice. However, pituitary gonadotropin, and GnRH receptor gene expression was not affected, and serum gonadotropin levels were normal. Gonadotropins increased after ovariectomy for both groups. Baseline Kiss1, Fshr, Prkaca, Prkar1a, and Gdf9 ovarian mRNA expression was increased and Cyp19a1 expression was decreased in Nsmf KO mice, while superovulated Nsmf KO mice had reduced ovarian Kiss1r, Prkar1a, and Fshr mRNA expression, 50% less oocytes, and normal implantation. Western blot demonstrated NSMF protein expression in the ovary of WT mice. CONCLUSIONS: Altered hypothalamic and ovarian gene expression was demonstrated in female Nsmf KO mice. It is possible that increased hypothalamic Gnrh1 and Kiss1 mRNA expression could compensate for reduced NSMF enabling a normal pituitary gonadotropin response. Impaired superovulation response, altered ovarian gene expression, and decreased number of oocytes indicate ovarian dysfunction, but a uterine factor cannot be excluded. These findings provide an anatomic basis for future mechanistic studies of subfertility in female Nsmf KO mice.


Subject(s)
Infertility , Kisspeptins , Humans , Female , Mice , Animals , Mice, Knockout , Gonadotropin-Releasing Hormone , Gonadotropins, Pituitary , RNA, Messenger/metabolism
4.
Hum Genet ; 142(4): 483-494, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36797380

ABSTRACT

The molecular basis of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome remains largely unknown. Pathogenic variants in WNT4 and HNF1B have been confirmed in a small percent of individuals. A variety of copy number variants have been reported, but causal gene(s) remain to be identified. We hypothesized that rare structural variants (SVs) would be present in some individuals with MRKH, which could explain the genetic basis of the syndrome. Large molecular weight DNA was extracted from lymphoblastoid cells from 87 individuals with MRKH and available parents. Optical genome mapping (OGM) was performed to identify SVs, which were confirmed by another method (quantitative PCR, chromosomal microarray, karyotype, or fluorescent in situ hybridization) when possible. Thirty-four SVs that overlapped coding regions of genes with potential involvement in MRKH were identified, 14 of which were confirmed by a second method. These 14 SVs were present in 17/87 (19.5%) of probands with MRKH and included seven deletions, three duplications, one new translocation in 5/50 cells-t(7;14)(q32;q32), confirmation of a previously identified translocation-t(3;16)(p22.3;p13.3), and two aneuploidies. Of interest, three cases of mosaicism (3.4% of probands) were identified-25% mosaicism for trisomy 12, 45,X(75%)/46,XX (25%), and 10% mosaicism for a 7;14 translocation. Our study constitutes the first systematic investigation of SVs by OGM in individuals with MRKH. We propose that OGM is a promising method that enables a comprehensive investigation of a variety of SVs in a single assay including cryptic translocations and mosaic aneuploidies. These observations suggest that mosaicism could play a role in the genesis of MRKH.


Subject(s)
Congenital Abnormalities , Mosaicism , Humans , In Situ Hybridization, Fluorescence , Aneuploidy , Chromosome Mapping , Congenital Abnormalities/genetics
5.
Am J Med Genet A ; 185(12): 3916-3923, 2021 12.
Article in English | MEDLINE | ID: mdl-34405946

ABSTRACT

Sotos syndrome is characterized by overgrowth starting before birth through childhood with intellectual disability and craniofacial anomalies. The majority of patients are large for gestational age with developmental delay or intellectual disability. The majority of cases are caused by pathogenic variants in NSD1. The most consistent physical features in this disorder are facial dysmorphisms including prominent forehead, downslanted palpebral fissures, prognathism with a pointed chin, and a long and narrow face. We present a follow-up to a cohort of 11 individuals found to harbor heterozygous, pathogenic, or likely pathogenic variants in NSD1. We analyzed the facial dysmorphisms and the condition using retrospective over 20 years. Among these patients, followed in our medical genetics outpatient clinic for variable periods of time, all had a phenotype compatible with the characteristic Sotos syndrome facial features, which evolved with time and became superimposed with natural aging modifications. We present here a long-term follow-up of facial features of Brazilian patients with molecularly confirmed Sotos syndrome. In this largest Brazilian cohort of molecularly confirmed patients with Sotos syndrome to date, we provide a careful description of the facial phenotype, which becomes less pronounced with aging and possibly more difficult to recognize in adults. These results may have broad clinical implications for diagnosis and add to the global clinical delineation of this condition.


Subject(s)
Craniofacial Abnormalities/genetics , Genetic Predisposition to Disease , Histone-Lysine N-Methyltransferase/genetics , Sotos Syndrome/genetics , Adolescent , Brazil/epidemiology , Child , Child, Preschool , Craniofacial Abnormalities/diagnostic imaging , Craniofacial Abnormalities/physiopathology , Developmental Disabilities/complications , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Face/diagnostic imaging , Face/physiopathology , Female , Follow-Up Studies , Growth Disorders/complications , Growth Disorders/genetics , Growth Disorders/physiopathology , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Male , Phenotype , Sotos Syndrome/diagnostic imaging , Sotos Syndrome/physiopathology
6.
Hum Genet ; 140(4): 667-680, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33469725

ABSTRACT

PURPOSE: Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome consists of congenital absence of the uterus and vagina and is often associated with renal, skeletal, cardiac, and auditory defects. The genetic basis is largely unknown except for rare variants in several genes. Many candidate genes have been suggested by mouse models and human studies. The purpose of this study was to narrow down the number of candidate genes. METHODS: Whole exome sequencing was performed on 111 unrelated individuals with MRKH; variant analysis focused on 72 genes suggested by mouse models, human studies of physiological candidates, or located near translocation breakpoints in t(3;16). Candidate variants (CV) predicted to be deleterious were confirmed by Sanger sequencing. RESULTS: Sanger sequencing verified 54 heterozygous CV from genes identified through mouse (13 CV in 6 genes), human (22 CV in seven genes), and translocation breakpoint (19 CV in 11 genes) studies. Twelve patients had ≥ 2 CVs, including four patients with two variants in the same gene. One likely digenic combination of LAMC1 and MMP14 was identified. CONCLUSION: We narrowed 72 candidate genes to 10 genes that appear more likely implicated. These candidate genes will require further investigation to elucidate their role in the development of MRKH.


Subject(s)
46, XX Disorders of Sex Development/genetics , Congenital Abnormalities/genetics , Mullerian Ducts/abnormalities , Uterus/abnormalities , Vagina/abnormalities , 46, XX Disorders of Sex Development/pathology , Animals , Congenital Abnormalities/pathology , Female , Genetic Variation , Humans , Male , Mice , Mullerian Ducts/pathology , Translocation, Genetic , Exome Sequencing
7.
J Clin Endocrinol Metab ; 105(5)2020 05 01.
Article in English | MEDLINE | ID: mdl-32152632

ABSTRACT

CONTEXT: We previously reported the first female with a causative ESR1 gene variant, who exhibited absent puberty and high estrogens. At age 15 years, she presented with lower abdominal pain, absent breast development, primary amenorrhea, and multicystic ovaries. The natural history of complete estrogen insensitivity (CEI) in women is unknown. OBJECTIVE: The purpose of this report is to present the neuroendocrine phenotype of CEI, identify potential ligands, and determine the effect of targeted treatment. DESIGN: We have characterized gonadotropin pulsatility and followed this patient's endocrine profile and bone density over 8 years. Seventy-five different compounds were tested for transactivation of the variant receptor. A personalized medicine approach was tailored to our patient. SETTING: Academic medical center. PATIENT OR OTHER PARTICIPANTS: A 24-year-old adopted white female with CEI. INTERVENTION(S): The patient was treated with diethylstilbestrol (DES) for approximately 2.5 years. MAIN OUTCOME MEASURE(S): Induction of secondary sexual characteristics. RESULTS: Luteinizing hormone (LH) pulse studies demonstrated normal pulsatile LH secretion, elevated mean LH, and mildly elevated mean follicle-stimulating hormone (FSH) in the presence of markedly increased estrogens. DES transactivated the variant ESR1 in vitro. However, DES treatment did not induce secondary sexual characteristics in our patient. CONCLUSIONS: Treatment with DES was not successful in our patient. She remains hypoestrogenic despite the presence of ovarian cysts with a hypoestrogenic vaginal smear, absent breast development, and low bone mineral mass. Findings suggest additional receptor mechanistic actions are required to elicit clinical hormone responses.


Subject(s)
Amenorrhea/genetics , Amenorrhea/therapy , Drug Resistance/genetics , Estrogen Receptor alpha/genetics , Adolescent , Adult , Amenorrhea/complications , Animals , COS Cells , Chlorocebus aethiops , Female , Follow-Up Studies , Hep G2 Cells , Humans , Ovarian Cysts/complications , Ovarian Cysts/genetics , Ovarian Cysts/therapy , Puberty, Delayed/complications , Puberty, Delayed/genetics , Puberty, Delayed/therapy , Young Adult
8.
Sci Rep ; 9(1): 20099, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882810

ABSTRACT

Approximately 0.5-1.4% of natal males and 0.2-0.3% of natal females meet DSM-5 criteria for gender dysphoria, with many of these individuals self-describing as transgender men or women. Despite recent improvements both in social acceptance of transgender individuals as well as access to gender affirming therapy, progress in both areas has been hampered by poor understanding of the etiology of gender dysphoria. Prior studies have suggested a genetic contribution to gender dysphoria, but previously proposed candidate genes have not yet been verified in follow-up investigation. In this study, we expand on the topic of gender identity genomics by identifying rare variants in genes associated with sexually dimorphic brain development and exploring how they could contribute to gender dysphoria. To accomplish this, we performed whole exome sequencing on the genomic DNA of 13 transgender males and 17 transgender females. Whole exome sequencing revealed 120,582 genetic variants. After filtering, 441 variants in 421 genes remained for further consideration, including 21 nonsense, 28 frameshift, 13 splice-region, and 225 missense variants. Of these, 21 variants in 19 genes were found to have associations with previously described estrogen receptor activated pathways of sexually dimorphic brain development. These variants were confirmed by Sanger Sequencing. Our findings suggest a new avenue for investigation of genes involved in estrogen signaling pathways related to sexually dimorphic brain development and their relationship to gender dysphoria.


Subject(s)
Exome Sequencing , Genetic Variation , Genome-Wide Association Study , Transgender Persons , Alternative Splicing , Chromosome Mapping , Female , Frameshift Mutation , Genome-Wide Association Study/methods , Humans , Male , Mutation, Missense , Sequence Analysis, DNA , Sex Determination Processes/genetics
9.
Mol Cytogenet ; 11: 13, 2018.
Article in English | MEDLINE | ID: mdl-29434669

ABSTRACT

BACKGROUND: Little is known about the genetic contribution to Müllerian aplasia, better known to patients as Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. Mutations in two genes (WNT4 and HNF1B) account for a small number of patients, but heterozygous copy number variants (CNVs) have been described. However, the significance of these CNVs in the pathogenesis of MRKH is unknown, but suggests possible autosomal dominant inheritance. We are not aware of CNV studies in consanguineous patients, which could pinpoint genes important in autosomal recessive MRKH. We therefore utilized SNP/CGH microarrays to identify CNVs and define regions of homozygosity (ROH) in Anatolian Turkish MRKH patients. RESULTS: Five different CNVs were detected in 4/19 patients (21%), one of which is a previously reported 16p11.2 deletion containing 32 genes, while four involved smaller regions each containing only one gene. Fourteen of 19 (74%) of patients had parents that were third degree relatives or closer. There were 42 regions of homozygosity shared by at least two MRKH patients which was spread throughout most chromosomes. Of interest, eight candidate genes suggested by human or animal studies (RBM8A, CMTM7, CCR4, TRIM71, CNOT10, TP63, EMX2, and CFTR) reside within these ROH. CONCLUSIONS: CNVs were found in about 20% of Turkish MRKH patients, and as in other studies, proof of causation is lacking. The 16p11.2 deletion seen in mixed populations is also identified in Turkish MRKH patients. Turkish MRKH patients have a higher likelihood of being consanguineous than the general Anatolian Turkish population. Although identified single gene mutations and heterozygous CNVs suggest autosomal dominant inheritance for MRKH in much of the western world, regions of homozygosity, which could contain shared mutant alleles, make it more likely that autosomal recessively inherited causes will be manifested in Turkish women with MRKH.

10.
Mol Cell Endocrinol ; 470: 151-159, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29050862

ABSTRACT

Hypothalamic gonadotropin releasing hormone (GnRH) is crucial for the proper function of the hypothalamic-pituitary-gonadal (HPG) axis, subsequent puberty, and reproduction. When GnRH neuron migration or GnRH regulation is impaired, hypogonadotropic hypogonadism results. Mutations in the gene for nasal embryonic luteinizing hormone-releasing factor (NELF) have been identified in GnRH-deficient humans. NELF is a predominantly nuclear protein that may participate in gene transcription, but the genes NELF regulates are unknown. To address this question, RNA was extracted from NLT GnRH neuronal cells following either stable Nelf knockdown or scrambled control and subjected to cDNA arrays. Transcription factors and cell migration gene expression was altered most commonly. Members of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, including Stat1, Stat2, Stat5a, Jak2, Irf7 and Irf9, were significantly down regulated as assessed by RT-qPCR. Protein levels of STAT1, phospho-STAT1, and JAK2 were reduced, but the protein level of phospho-JAK2 was not. These findings suggest a role for NELF in the regulation of the JAK/STAT signaling pathway, which have important functions in GnRH neurons.


Subject(s)
Gene Expression Regulation , Gene Knockdown Techniques , Gonadotropin-Releasing Hormone/metabolism , Janus Kinases/metabolism , Neurons/metabolism , STAT Transcription Factors/metabolism , Transcription Factors/metabolism , Animals , Humans , Mice, Transgenic , Rats , Reproducibility of Results , Signal Transduction
11.
Fertil Steril ; 108(1): 145-151.e2, 2017 07.
Article in English | MEDLINE | ID: mdl-28600106

ABSTRACT

OBJECTIVE: To study the genetic cause of Mayer-Rokitansky-Kuster-Hauser syndrome (MRKH). Although a few candidate genes and genomic domains for have been reported for MRKH, the genetic underpinnings remain largely unknown. Some of the top candidate genes are WNT4, HNF1B, and LHX1. The goals of this study were to: 1) determine the prevalence of WNT4, HNF1B, and LHX1 point mutations, as well as new copy number variants (CNVs) in people with MRKH; and 2) identify and characterize MRKH cohorts. DESIGN: Laboratory- and community-based study. SETTING: Academic medical centers. PATIENT(S): A total of 147 MRKH probands and available family members. INTERVENTIONS(S): DNA sequencing of WNT4, HNF1B, and LHX1 in 100 MRKH patients, chromosomal microarray analysis in 31 North American MRKH patients, and characterization and sample collection of 147 North American and Turkish MRKH probands and their families. MAIN OUTCOME MEASURE(S): DNA sequence variants and CNVs; pedigree structural analysis. RESULT(S): We report finding CNVs in 6/31 people (∼19%) with MRKH, but no point mutations or small indels in WNT4, HNF1B, or LHX1 in 100 MRKH patients. Our MRKH families included 43 quads, 26 trios, and 30 duos. Of our MRKH probands, 87/147 (59%) had MRKH type 1 and 60/147 (41%) had type 2 with additional anomalies. CONCLUSION(S): Although the prevalence of WNT4, HNF1B, and LHX1 point mutations is low in people with MRKH, the prevalence of CNVs was ∼19%. Further analysis of our large familial cohort of patients will facilitate gene discovery to better understand the complex etiology of MRKH.


Subject(s)
46, XX Disorders of Sex Development/epidemiology , 46, XX Disorders of Sex Development/genetics , Congenital Abnormalities/epidemiology , Congenital Abnormalities/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , LIM-Homeodomain Proteins/genetics , Mullerian Ducts/abnormalities , Polymorphism, Single Nucleotide/genetics , Transcription Factors/genetics , Wnt4 Protein/genetics , Adult , Cohort Studies , Family , Genetic Markers/genetics , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Humans , Internationality , Prevalence , Risk Factors , Young Adult
12.
Mol Cell Endocrinol ; 437: 86-96, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27502037

ABSTRACT

The genetic basis is unknown for ∼60% of normosmic hypogonadotropic hypogonadism (nHH)/Kallmann syndrome (KS). DNAs from (17 male and 31 female) nHH/KS patients were analyzed by targeted next generation sequencing (NGS) of 261 genes involved in hypothalamic, pituitary, and/or olfactory pathways, or suggested by chromosome rearrangements. Selected variants were subjected to Sanger DNA sequencing, the gold standard. The frequency of Sanger-confirmed variants was determined using the ExAC database. Variants were classified as likely pathogenic (frameshift, nonsense, and splice site) or predicted pathogenic (nonsynonymous missense). Two novel FGFR1 mutations were identified, as were 18 new candidate genes including: AMN1, CCKBR, CRY1, CXCR4, FGF13, GAP43, GLI3, JAG1, NOS1, MASTL, NOTCH1, NRP2, PALM2, PDE3A, PLEKHA5, RD3, and TRAPPC9, and TSPAN11. Digenic and trigenic variants were found in 8/48 (16.7%) and 1/48 (2.1%) patients, respectively. NGS with confirmation by Sanger sequencing resulted in the identification of new causative FGFR1 gene mutations and suggested 18 new candidate genes in nHH/KS.


Subject(s)
Genetic Association Studies , High-Throughput Nucleotide Sequencing/methods , Hypogonadism/genetics , Kallmann Syndrome/genetics , Female , Humans , Male , Mutation/genetics , Pedigree , Phenotype
13.
Mol Cytogenet ; 9: 57, 2016.
Article in English | MEDLINE | ID: mdl-27478502

ABSTRACT

BACKGROUND: Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome, or the congenital absence of uterus and vagina, is the most severe anomaly of the female reproductive tract. It affects 1 in 5,000 females, and is the second most common cause of primary amenorrhea. The etiology remains unknown in most patients, although four single gene defects and some repetitive copy number variants (CNVs) have been identified. Translocations in MRKH patients are very rare, and reported only in three patients previously without breakpoint mapping. We have identified the fourth MRKH translocation patient and are the first to characterize the breakpoints mapped by molecular methods. RESULTS: The proband is a 17- year old white female with agenesis of the uterus and vagina who had a peripheral blood karyotype revealing a de novo balanced translocation 46,XX,t(3;16)(p22.3;p13.3)dn. There were no known related anomalies present in the proband or her family. No CNVs were found by chromosomal microarray analysis, and no genes were directly disrupted by the translocation. DNA sequencing of six nearby candidate genes-TRIM71, CNOT10, ZNF200, OR1F1, ZNF205, and ZNF213-did not reveal any mutations. RT-qPCR of proband lymphoblast RNA for 20 genes near the breakpoints of 3p22.3 and 16p13.3 showed significantly altered expression levels for four genes in the proband compared to three white female controls, after correction for multiple comparisons. Reduced expression was seen for CMTM7 and CCR4 on 3p22.3, while increased expression was observed for IL32 and MEFV on 16p13.3. CONCLUSION: We have mapped the breakpoints of our t(3;16)(p22.3;p13.3) translocation patient using molecular methods to within 13.6 kb at 3p22.3 and within 1.9 kb for 16p13.3 and have suggested 10 nearby genes that become plausible candidate genes for future study.

14.
Mol Cell Endocrinol ; 407: 26-36, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25731822

ABSTRACT

Puberty and reproduction require proper signaling of the hypothalamic-pituitary-gonadal axis controlled by gonadotropin-releasing hormone (GnRH) neurons, which arise in the olfactory placode region and migrate along olfactory axons to the hypothalamus. Factors adversely affecting GnRH neuron specification, migration, and function lead to delayed puberty and infertility. Nasal embryonic luteinizing hormone-releasing factor (NELF) is a predominantly nuclear protein. NELF mutations have been demonstrated in patients with hypogonadotropic hypogonadism, but biallelic mutations are rare and heterozygous NELF mutations typically co-exist with mutations in another gene. Our previous studies in immortalized GnRH neurons supported a role for NELF in GnRH neuron migration. To better understand the physiology of NELF, a homozygous Nelf knockout (KO) mouse model was generated. Our findings indicate that female Nelf KO mice have delayed vaginal opening but no delay in time to first estrus, decreased uterine weight, and reduced GnRH neuron number. In contrast, male mice were normal at puberty. Both sexes of mice had impaired fertility manifested as reduced mean litter size. These data support that NELF has important reproductive functions. The milder than expected phenotype of KO mice also recapitulates the human phenotype since heterozygous NELF mutations usually require an additional mutation in a second gene to result in hypogonadotropic hypogonadism.


Subject(s)
Hypothalamo-Hypophyseal System/metabolism , Infertility/genetics , Neurons/metabolism , Reproduction/genetics , Transcription Factors/deficiency , Uterus/metabolism , Animals , Cell Count , Cell Movement , Estrus/genetics , Female , Gene Expression Regulation , Gonadotropin-Releasing Hormone/biosynthesis , Gonadotropin-Releasing Hormone/genetics , Homozygote , Humans , Hypothalamo-Hypophyseal System/abnormalities , Hypothalamo-Hypophyseal System/growth & development , Infertility/physiopathology , Litter Size , Male , Mice , Mice, Knockout , Neurons/pathology , Sexual Maturation/genetics , Signal Transduction , Transcription Factors/genetics , Uterus/abnormalities , Uterus/growth & development
15.
Mol Cytogenet ; 8: 13, 2015.
Article in English | MEDLINE | ID: mdl-25737742

ABSTRACT

BACKGROUND: Females with Xp;Yq translocations manifest short stature and normal fertility, but rarely have follow-up. The study purpose was to define the phenotype of a family with t(X;Y)(p22.3;q11.2), determine long-term reproductive function, and compare to all reported female cases. METHODS: Comprehensive clinical and molecular analyses were performed on the female proband, who had regular menses, normal endocrine function, and three pregnancies spanning seven years--a normal liveborn male and two with unbalanced translocations (liveborn female and stillborn male). RESULTS: The translocation truncated KAL1 and deleted 44 genes on der(X). Our report constitutes the longest follow-up of an X;Y translocation female. She had no evidence of Kallmann syndrome, gonadoblastoma, or cardiovascular disease. Detailed analysis of 50 published female cases indicated a uniform lack of follow-up and significant morbidity-intellectual disability (10%), facial dysmorphism (28%), eye abnormalities (14%), and skeletal defects (28%). CONCLUSIONS: Our findings indicate normal ovarian function to date in a woman with an t(X;Y)(p22.3;q11.2). However, additional published studies in the literature suggest careful follow-up is necessary and contradict the generalization that females with Xp;Yq translocations are usually normal except for short stature.

16.
Mol Cell Endocrinol ; 383(1-2): 32-7, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24316376

ABSTRACT

NELF, a protein identified in migratory GnRH neurons, is predominantly nuclear and alternatively spliced. However, specific NELF splice variants expressed in immortalized GnRH neuronal cell lines from mouse and human are not known. RNA from migratory (GN11 and NLT) and postmigratory (GT1-7) cells in mouse, and (FNCB4-hTERT) cells in human was subjected to RT-PCR. RT-PCR products were cloned, electrophoresed on denaturing gradient gels and sequenced. In addition, quantitative RT-PCR was performed using variant-specific primers. Western blot and immunofluorescence using confocal microscopy were performed for selected variants. Nelf variant 2 (v2), which contains a nuclear localization signal (NLS), was the predominant variant in all mouse and human GnRH neurons. Variants without a NLS (v3 in mouse; v4 in human) were identified. In mouse, v2 protein expression was nuclear, while v3 was non-nuclear. In mouse GnRH neurons, six Nelf splice variant transcripts were identified, including three previously unreported variants. In human, four NELF variant transcripts were observed. In both mouse and human, nuclear and non-nuclear variant transcript and protein were identified, explaining variable NELF cellular localization.


Subject(s)
Gene Expression Regulation , Neurons/metabolism , RNA, Messenger/genetics , Transcription Factors/genetics , Alternative Splicing , Animals , Cell Line, Transformed , Cell Movement , Cell Nucleus/metabolism , Gonadotropin-Releasing Hormone/metabolism , Humans , Mice , Neurons/cytology , Nuclear Localization Signals , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Signal Transduction , Species Specificity , Transcription Factors/metabolism
17.
N Engl J Med ; 369(2): 164-71, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23841731

ABSTRACT

Although androgen resistance has been characterized in men with a normal chromosome complement and mutations in the androgen-receptor gene, a mutation in the gene encoding estrogen receptor α (ESR1) was previously described only in one man and not, to our knowledge, in a woman. We now describe an 18-year-old woman without breast development and with markedly elevated serum levels of estrogens and bilateral multicystic ovaries. She was found to have a homozygous loss-of-function ESR1 mutation in a completely conserved residue that interferes with estrogen signaling. Her clinical presentation was similar to that in the mouse orthologue knockout. This case shows that disruption of ESR1 causes profound estrogen resistance in women. (Funded by the National Institutes of Health.).


Subject(s)
Estradiol/blood , Estrogen Receptor alpha/genetics , Estrogens/metabolism , Mutation, Missense , Puberty, Delayed/genetics , Adolescent , Blood Glucose/analysis , Estradiol/administration & dosage , Estrogen Receptor alpha/metabolism , Estrone/blood , Female , Humans , Sequence Analysis, DNA
18.
Fertil Steril ; 99(7): 1831-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23465708

ABSTRACT

OBJECTIVE: To determine whether HESX1 mutations are present in patients with idiopathic hypogonadotropic hypogonadism (IHH)/Kallmann syndrome (KS). DESIGN: Polymerase chain reaction-based DNA sequencing was performed on 217 well-characterized IHH/KS patients. Putative missense mutations were analyzed by sorting intolerant from tolerant (SIFT) and Clustal Ω. SETTING: Academic medical center. PATIENT(S): Two hundred seventeen patients with IHH/KS and 192 controls. INTERVENTION(S): Deoxyribonucleic acid was extracted from patients and controls; genotype/phenotype comparisons were made. MAIN OUTCOME MEASURE(S): Deoxyribonucleic acid sequence of HESX1, SIFT analysis, and ortholog alignment. RESULT(S): Two novel heterozygous missense mutations (p.H42Y and p.V75L) and previously reported heterozygous missense mutation p.Q6H in HESX1 were identified in 3 of 217 patients (1.4%). All were males with KS. Both p.Q6H and p.H42Y were predicted to be deleterious by SIFT, whereas p.V75L was conserved in 8 of 9 species. No other IHH/KS gene mutations were present. CONCLUSION(S): HESX1 mutations may cause KS in addition to more severe phenotypes. Our findings expand the phenotypic spectrum of HESX1 mutations in humans, thereby broadening its role in development.


Subject(s)
Homeodomain Proteins/genetics , Hypogonadism/genetics , Kallmann Syndrome/genetics , Mutation, Missense , Amino Acid Sequence , Case-Control Studies , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , Heterozygote , Homeodomain Proteins/metabolism , Humans , Hypogonadism/metabolism , Hypogonadism/physiopathology , Kallmann Syndrome/metabolism , Kallmann Syndrome/physiopathology , Male , Molecular Sequence Data , Phenotype , Polymerase Chain Reaction , Severity of Illness Index
19.
Fertil Steril ; 96(6): 1424-1430.e6, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22035731

ABSTRACT

OBJECTIVE: To determine the prevalence of digenic mutations in patients with idiopathic hypogonadotropic hypogonadism (IHH) and Kallmann syndrome (KS). DESIGN: Molecular analysis of DNA in IHH/KS patients. SETTING: Academic medical center. PATIENT(S): Twenty-four IHH/KS patients with a known mutation (group 1) and 24 IHH/KS patients with no known mutation (group 2). INTERVENTION(S): DNA from IHH/KS patients was subjected to polymerase chain reaction-based DNA sequencing of the 13 most common genes (KAL1, GNRHR, FGFR1, KISS1R, TAC3, TACR3, FGF8, PROKR2, PROK2, CHD7, NELF, GNRH1, and WDR11). MAIN OUTCOME MEASURE(S): The identification of mutations absent in ≥188 ethnically matched controls. Both SIFT (sorting intolerant from tolerant) and conservation among orthologs provided supportive evidence for pathologic roles. RESULT(S): In group 1, 6 (25%) of 24 IHH/KS patients had a heterozygous mutation in a second gene, and in group 2, 13 (54.2%) of 24 had a mutation in at least one gene, but none had digenic mutations. In group 2, 7 (29.2%) of 24 had a mutation considered sufficient to cause the phenotype. CONCLUSION(S): When the 13 most common IHH/KS genes are studied, the overall prevalence of digenic gene mutations in IHH/KS was 12.5%. In addition, approximately 30% of patients without a known mutation had a mutation in a single gene. With the current state of knowledge, these findings suggest that most IHH/KS patients have a monogenic etiology.


Subject(s)
Hypogonadism/genetics , Kallmann Syndrome/genetics , Mutation , Adolescent , Adult , Female , Gene Frequency , Humans , Hypogonadism/epidemiology , Kallmann Syndrome/epidemiology , Male , Models, Biological , Polymorphism, Single Nucleotide , Prevalence , Young Adult
20.
Fertil Steril ; 95(5): 1613-20.e1-7, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21300340

ABSTRACT

OBJECTIVE: To determine if mutations in NELF, a gene isolated from migratory GnRH neurons, cause normosmic idiopathic hypogonadotropic hypogonadism (IHH) and Kallmann syndrome (KS). DESIGN: Molecular analysis correlated with phenotype. SETTING: Academic medical center. PATIENT(S): A total of 168 IHH/KS patients as well as unrelated control subjects were studied for NELF mutations. INTERVENTION(S): NELF coding regions/splice junctions were subjected to polymerase chain reaction (PCR)-based DNA sequencing. Eleven additional IHH/KS genes were sequenced in three patients with NELF mutations. MAIN OUTCOME MEASURE(S): Mutations were confirmed by sorting intolerant from tolerant, reverse-transcription (RT)-PCR, and Western blot analysis. RESULT(S): Three novel NELF mutations absent in 372 ethnically matched control subjects were identified in 3/168 (1.8%) IHH/KS patients. One IHH patient had compound heterozygous NELF mutations (c.629-21G>C and c.629-23C>G), and he did not have mutations in 11 other known IHH/KS genes. Two unrelated KS patients had heterozygous NELF mutations and mutation in a second gene: NELF/KAL1 (c.757G>A; p.Ala253Thr of NELF and c.488_490delGTT; p.Cys163del of KAL1) and NELF/TACR3 (c.1160-13C>T of NELF and c.824G>A; p.Trp275X of TACR3). In vitro evidence of these NELF mutations included reduced protein expression and splicing defects. CONCLUSION(S): Our findings suggest that NELF is associated with normosmic IHH and KS, either singly or in combination with a mutation in another gene.


Subject(s)
Hypogonadism/genetics , Kallmann Syndrome/genetics , Mutation , Transcription Factors/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Hypogonadism/complications , Kallmann Syndrome/complications , Male , Middle Aged , Mutation/physiology , Polymorphism, Single Nucleotide , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...