Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 36(21): 5736-47, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27225764

ABSTRACT

UNLABELLED: The architectonic subdivisions of the brain are believed to be functional modules, each processing parts of global functions. Previously, we showed that neurons in different regions operate in different firing regimes in monkeys. It is possible that firing regimes reflect differences in underlying information processing, and consequently the firing regimes in homologous regions across animal species might be similar. We analyzed neuronal spike trains recorded from behaving mice, rats, cats, and monkeys. The firing regularity differed systematically, with differences across regions in one species being greater than the differences in similar areas across species. Neuronal firing was consistently most regular in motor areas, nearly random in visual and prefrontal/medial prefrontal cortical areas, and bursting in the hippocampus in all animals examined. This suggests that firing regularity (or irregularity) plays a key role in neural computation in each functional subdivision, depending on the types of information being carried. SIGNIFICANCE STATEMENT: By analyzing neuronal spike trains recorded from mice, rats, cats, and monkeys, we found that different brain regions have intrinsically different firing regimes that are more similar in homologous areas across species than across areas in one species. Because different regions in the brain are specialized for different functions, the present finding suggests that the different activity regimes of neurons are important for supporting different functions, so that appropriate neuronal codes can be used for different modalities.


Subject(s)
Action Potentials/physiology , Biological Clocks/physiology , Brain/physiology , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Animals , Cats , Computer Simulation , Female , Haplorhini , Male , Mice , Rats , Reproducibility of Results , Sensitivity and Specificity , Species Specificity
2.
Neuroimage ; 65: 540-55, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23036449

ABSTRACT

Granger causality is a method for identifying directed functional connectivity based on time series analysis of precedence and predictability. The method has been applied widely in neuroscience, however its application to functional MRI data has been particularly controversial, largely because of the suspicion that Granger causal inferences might be easily confounded by inter-regional differences in the hemodynamic response function. Here, we show both theoretically and in a range of simulations, that Granger causal inferences are in fact robust to a wide variety of changes in hemodynamic response properties, including notably their time-to-peak. However, when these changes are accompanied by severe downsampling, and/or excessive measurement noise, as is typical for current fMRI data, incorrect inferences can still be drawn. Our results have important implications for the ongoing debate about lag-based analyses of functional connectivity. Our methods, which include detailed spiking neuronal models coupled to biophysically realistic hemodynamic observation models, provide an important 'analysis-agnostic' platform for evaluating functional and effective connectivity methods.


Subject(s)
Brain/physiology , Computer Simulation , Hemodynamics/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Humans , Models, Neurological , Neural Pathways/physiology , Neurons/physiology
3.
Article in English | MEDLINE | ID: mdl-21629770

ABSTRACT

Dopaminergic neurons in the mammalian substantia nigra display characteristic phasic responses to stimuli which reliably predict the receipt of primary rewards. These responses have been suggested to encode reward prediction-errors similar to those used in reinforcement learning. Here, we propose a model of dopaminergic activity in which prediction-error signals are generated by the joint action of short-latency excitation and long-latency inhibition, in a network undergoing dopaminergic neuromodulation of both spike-timing dependent synaptic plasticity and neuronal excitability. In contrast to previous models, sensitivity to recent events is maintained by the selective modification of specific striatal synapses, efferent to cortical neurons exhibiting stimulus-specific, temporally extended activity patterns. Our model shows, in the presence of significant background activity, (i) a shift in dopaminergic response from reward to reward-predicting stimuli, (ii) preservation of a response to unexpected rewards, and (iii) a precisely timed below-baseline dip in activity observed when expected rewards are omitted.

SELECTION OF CITATIONS
SEARCH DETAIL
...