Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Robot ; 9(88): eadh8332, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478590

ABSTRACT

Ice worlds are at the forefront of astrobiological interest because of the evidence of subsurface oceans. Enceladus in particular is unique among the icy moons because there are known vent systems that are likely connected to a subsurface ocean, through which the ocean water is ejected to space. An existing study has shown that sending small robots into the vents and directly sampling the ocean water is likely possible. To enable such a mission, NASA's Jet Propulsion Laboratory is developing a snake-like robot called Exobiology Extant Life Surveyor (EELS) that can navigate Enceladus' extreme surface and descend an erupting vent to capture unaltered liquid samples and potentially reach the ocean. However, navigating to and through Enceladus' environment is challenging: Because of the limitations of existing orbital reconnaissance, there is substantial uncertainty with respect to its geometry and the physical properties of the surface/vents; communication is limited, which requires highly autonomous robots to execute the mission with limited human supervision. Here, we provide an overview of the EELS project and its development effort to create a risk-aware autonomous robot to navigate these extreme ice terrains/environments. We describe the robot's architecture and the technical challenges to navigate and sense the icy environment safely and effectively. We focus on the challenges related to surface mobility, task and motion planning under uncertainty, and risk quantification. We provide initial results on mobility and risk-aware task and motion planning from field tests and simulated scenarios.

2.
Sci Robot ; 8(80): eadf0970, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37467309

ABSTRACT

We propose a dual-resolution scheme to achieve time-efficient autonomous exploration with one or many robots. The scheme maintains a high-resolution local map of the robot's immediate vicinity and a low-resolution global map of the remaining areas of the environment. We believe that the strength of our approach lies in this low- and high-resolution representation of the environment: The high-resolution local map ensures that the robots observe the entire region in detail, and because the local map is bounded, so is the computation burden to process it. The low-resolution global map directs the robot to explore the broad space and only requires lightweight computation and low bandwidth to communicate among the robots. This paper shows the strength of this approach for both single-robot and multirobot exploration. For multirobot exploration, we also introduce a "pursuit" strategy for sharing information among robots with limited communication. This strategy directs the robots to opportunistically approach each other. We found that the scheme could produce exploration paths with a bounded difference in length compared with the theoretical shortest paths. Empirically, for single-robot exploration, our method produced 80% higher time efficiency with 50% lower computational runtimes than state-of-the-art methods in more than 300 simulation and real-world experiments. For multirobot exploration, our pursuit strategy demonstrated higher exploration time efficiency than conventional strategies in more than 3400 simulation runs with up to 20 robots. Last, we discuss how our method was deployed in the DARPA Subterranean Challenge and demonstrated the fastest and most complete exploration among all teams.

SELECTION OF CITATIONS
SEARCH DETAIL