Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Robot Surg ; 17(6): 2749-2756, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37707742

ABSTRACT

Robotic navigation has been shown to increase precision, accuracy, and safety during spinal reconstructive procedures. There is a paucity of literature describing the best techniques for robotic-assisted spine surgery for complex, multilevel cases or in cases of significant deformity correction. We present a case series of 100 consecutive multilevel posterior spinal fusion procedures performed for multilevel spinal disease and/or deformity correction. 100 consecutive posterior spinal fusions were performed for multilevel disease and/or deformity correction utilizing robotic-assisted placement of pedicle screws. The primary outcome was surgery-related failure, which was defined as hardware breakage or reoperation with removal of hardware. A total of 100 consecutive patients met inclusion criteria. Among cases included, 31 were revision surgeries with existing hardware in place. The mean number of levels fused was 5.6, the mean operative time was 303 min, and the mean estimated blood loss was 469 mL. 28 cases included robotic-assisted placement of S2 alar-iliac (S2AI) screws. In total, 1043 pedicle screws and 53 S2AI screws were placed with robotic-assistance. The failure rate using survivorship analysis was 18/1043 (1.7%) and the failure rate of S2AI screws using survivorship analysis was 3/53 (5.7%). Four patients developed postoperative wound infections requiring irrigation and debridement procedures. None of the 1043 pedicle screws nor the 53 S2AI screws required reoperation due to malpositioning or suboptimal placement. This case series of 100 multilevel posterior spinal fusion procedures demonstrates promising results with low failure rates. With 1043 pedicle screws and 53 S2AI screws, we report low failure rates of 1.7% and 5.7%, respectively with zero cases of screw malpositioning. Robotic screw placement allows for accurate screw placement with no increased rate of postoperative infection compared to historical controls. Level of evidence: IV, Retrospective review.


Subject(s)
Pedicle Screws , Robotic Surgical Procedures , Robotics , Spinal Fusion , Humans , Robotic Surgical Procedures/methods , Spinal Fusion/methods , Spine , Retrospective Studies
2.
Int J Spine Surg ; 7: e8-e19, 2013.
Article in English | MEDLINE | ID: mdl-25694908

ABSTRACT

BACKGROUND: This is a retrospective review of 25 patients with severe lumbar nerve root compression undergoing multilevel anterior retroperitoneal lumbar interbody fusion and posterior instrumentation for deformity. The objective is to analyze the outcomes and clinical results from anterior interbody fusions performed through a lateral approach and compare these with traditional surgical procedures. METHODS: A consecutive series of 25 patients (78 extreme lateral interbody fusion [XLIF] levels) was identified to illustrate the primary advantages of XLIF in correcting the most extreme of the 3-dimensional deformities that fulfilled the following criteria: (1) a minimum of 40° of scoliosis; (2) 2 or more levels of translation, anterior spondylolisthesis, and lateral subluxation (subluxation in 2 planes), causing symptomatic neurogenic claudication and severe spinal stenosis; and (3) lumbar hypokyphosis or flat-back syndrome. In addition, the majority had trunks that were out of balance (central sacral vertical line ≥2 cm from vertical plumb line) or had sagittal imbalance, defined by a distance between the sagittal vertical line and S1 of greater than 3 cm. There were 25 patients who had severe enough deformities fulfilling these criteria that required supplementation of the lateral XLIF with posterior osteotomies and pedicle screw instrumentation. RESULTS: In our database, with a mean follow-up of 24 months, 85% of patients showed evidence of solid arthrodesis and no subsidence on computed tomography and flexion/extension radiographs. The complication rate remained low, with a perioperative rate of 2.4% and postoperative rate of 12.2%. The lateral listhesis and anterior spondylolisthetic subluxation were anatomically reduced with minimally invasive XLIF. The main finding in these 25 cases was our isolation of the major indication for supplemental posterior surgery: truncal decompensation in patients who are out of balance by 2 cm or more, in whom posterior spinal osteotomies and segmental pedicle screw instrumentation were required at follow up. No patients were out of sagittal balance (sagittal vertical line <3 cm from S1) postoperatively. Segmental instrumentation with osteotomies was also more effective for restoration of physiologic lumbar lordosis compared with anterior stand-alone procedures. CONCLUSIONS: This retrospective study supports the finding that clinical outcomes (coronal/sagittal alignment) improve postoperatively after minimally invasive surgery with multilevel XLIF procedures and are improved compared with larger extensile thoracoabdominal anterior scoliosis procedures.

3.
Spine (Phila Pa 1976) ; 35(26 Suppl): S302-11, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21160394

ABSTRACT

STUDY DESIGN: A retrospective review of patients treated at 2 institutions with anterior lumbar interbody fusion using a minimally invasive lateral retroperitoneal approach, and review of literature. OBJECTIVE: To analyze the outcomes from historical literature and from a retrospectively compiled database of patients having undergone anterior interbody fusions performed through a lateral approach. SUMMARY OF BACKGROUND DATA: A paucity of published literature exists describing outcomes following lateral approach fusion surgery. METHODS: Patients treated with extreme lateral interbody fusion (XLIF) were identified through retrospective chart review. Treatment variables included operating room (OR) time, estimated blood loss (EBL), length of hospital stay (LOS), complications, and fusion rate. A literature review, using the National Center for Biotechnology Information databases PubMed/MEDLINE and Google Scholar, yielded 14 peer-reviewed articles reporting outcomes scoring, complications, fusion status, long-term follow-up, and radiographic assessments related to XLIF. Published XLIF results were summarized and evaluated with current study data. RESULTS: A total of 84 XLIF patients were included in the current cohort analysis. OR time, EBL, and length of hospital stay averaged 199 minutes, 155 mL, and 2.6 days, respectively, and perioperative and postoperative complication rates were 2.4% and 6.1%. Mean follow-up was 15.7 months. Sixty-eight patients showed evidence of solid arthrodesis and no subsidence on computed tomography and flexion/extension radiographs. Results were within the ranges of those in the literature. Literature review identified reports of significant improvements in clinical outcomes scores, radiographic measures, and cost effectiveness. CONCLUSION: Current data corroborates and contributes to the existing body of literature describing XLIF outcomes. Procedures are generally performed with short OR times, minimal EBL, and few complications. Patients recover quickly, requiring minimal hospital stay, although transient hip/thigh pain and/or weakness is common. Long-term outcomes are generally favorable, with maintained improvements in patient-reported pain and function scores as well as radiographic parameters, including high rates of fusion.


Subject(s)
Lumbar Vertebrae/surgery , Minimally Invasive Surgical Procedures/methods , Spinal Diseases/surgery , Spinal Fusion/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Length of Stay , Lumbar Vertebrae/diagnostic imaging , Male , Middle Aged , Radiography , Retrospective Studies , Spinal Diseases/diagnostic imaging , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...