Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36554825

ABSTRACT

The dramatic increase in electromagnetic fields (EMFs) in the environment has led to public health concerns around the world. Based on over 70 years of research in this field, the World Health Organization (WHO) has concluded that scientific knowledge in this area is now more extensive than for most chemicals and that current evidence does not confirm the existence of any health consequences from exposure to low-level electromagnetic fields. However, controversy on electromagnetic safety continues. Two international groups, the International Committee on Electromagnetic Safety of the Institute of Electrical and Electronics Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection, have been addressing this issue for decades. While the goal of both groups is to provide human exposure limits that protect against established or substantiated adverse health effects, there are groups that advocate more stringent exposure limits, based on possible biological effects. Both biological and engineering complexities make the validity of many EMF studies questionable. Controversies in research, publication, standards, regulations and risk communication concerning electromagnetic safety will be addressed in this article. The WHO is conducting systematic reviews on the RF biological effects literature. If scientists would discuss the safety issues of EMFs based on validated scientific facts and not on unreproducible possible effects and opinions, the controversy would be minimized or resolved.


Subject(s)
Environmental Exposure , Radio Waves , Humans , Radio Waves/adverse effects , Electromagnetic Fields/adverse effects
2.
Radiat Res ; 174(1): 91-100, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20681803

ABSTRACT

An electromagnetic analysis of a human head with EEG electrodes and leads exposed to RF-field sources was performed by means of Finite-Difference Time-Domain simulations on a 1-mm(3) MRI-based human head model. RF-field source models included a half-wave dipole, a patch antenna, and a realistic CAD-based mobile phone at 915 MHz and 1748 MHz. EEG electrodes/leads models included two configurations of EEG leads, both a standard 10-20 montage with 19 electrodes and a 32-electrode cap, and metallic and high resistive leads. Whole-head and peak 10-g average SAR showed less than 20% changes with and without leads. Peak 1-g and 10-g average SARs were below the ICNIRP and IEEE guideline limits. Conversely, a comprehensive volumetric assessment of changes in the RF field with and without metallic EEG leads showed an increase of two orders of magnitude in single-voxel power absorption in the epidermis and a 40-fold increase in the brain during exposure to the 915 MHz mobile phone. Results varied with the geometry and conductivity of EEG electrodes/leads. This enhancement confirms the validity of the question whether any observed effects in studies involving EEG recordings during RF-field exposure are directly related to the RF fields generated by the source or indirectly to the RF-field-induced currents due to the presence of conductive EEG leads.


Subject(s)
Electroencephalography/instrumentation , Electromagnetic Fields , Head , Models, Anatomic , Radio Waves , Humans , Magnetic Resonance Imaging
3.
Radiat Res ; 165(1): 105-12, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16392968

ABSTRACT

Numerical and experimental methods were employed to assess the individual and collective dosimetry of mice used in a bioassay on the exposure to pulsed radiofrequency energy at 900 MHz in the Ferris-wheel exposure system (Utteridge et al., Radiat. Res. 158, 357-364, 2002). Twin-well calorimetry was employed to measure the whole-body specific absorption rate (SAR) of mice for three body masses (23 g, 32 g and 36 g) to determine the lifetime exposure history of the mice used in the bioassay. Calorimetric measurements showed about 95% exposure efficiency and lifetime average whole-body SARs of 0.21, 0.86, 1.7 and 3.4 W kg(-1) for the four exposure groups. A larger statistical variation in SAR was observed in the smallest mice because they had the largest variation in posture inside the plastic restrainers. Infrared thermography provided SAR distributions over the sagittal plane of mouse cadavers. Thermograms typically showed SAR peaks in the abdomen, neck and head. The peak local SAR at these locations, determined by thermometric measurements, showed peak-to-average SAR ratios below 6:1, with typical values around 3:1. Results indicate that the Ferris wheel fulfills the requirement of providing a robust exposure setup, allowing uniform collective lifetime exposure of mice.


Subject(s)
Radio Waves , Whole-Body Counting/methods , Whole-Body Irradiation/instrumentation , Whole-Body Irradiation/methods , Animals , Body Burden , Cadaver , Equipment Design , Equipment Failure Analysis , Mice , Organ Specificity , Radiation Dosage , Radiometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...