Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 177: 106004, 2023 02.
Article in English | MEDLINE | ID: mdl-36669543

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease, characterized by motor dysfunction and abnormal energy metabolism. Equilibrative nucleoside transporter 1 (ENT1) and ENT2 are the major nucleoside transporters in cellular plasma membrane of the brain. Yet, unlike ENT1 whose function has been better investigated in HD, the role of ENT2 in HD remains unclear. The present study aimed to investigate the impacts of ENT2 deletion on HD using a well-characterized mouse model (R6/2). Microarray analysis, quantitative real-time polymerase chain reaction, and immunostaining of ENT2 in postmortem human brain tissues were conducted. R6/2 mice with or without genetic deletion of ENT2 were generated. Motor functions, including rotarod performance and limb-clasping test, were examined at the age of 7 to 12 weeks. Biochemical changes were evaluated by immunofluorescence staining and immunoblotting at the age of 12 to 13 weeks. In regard to energy metabolism, levels of striatal metabolites were determined by liquid chromatography coupled with the fluorescence detector or quadrupole time-of-flight mass spectrometer. Mitochondrial bioenergetics was assessed by the Seahorse assay. The results showed that ENT2 protein was detected in the neurons and astrocytes of human brains and the levels in the postmortem brain tended to be higher in patients with HD. In mice, ENT2 deletion did not alter the phenotype of the non-HD controls. Yet, ENT2 deletion deteriorated motor function and increased the number of aggregated mutant huntingtin in the striatum of R6/2 mice. Notably, disturbed energy metabolism with decreased ATP level and increased AMP/ ATP ratio was observed in R6/2-Ent2-/- mice, compared with R6/2-Ent2+/+ mice, resulting in the activation of AMPK in the late disease stage. Furthermore, ENT2 deletion reduced the NAD+/NADH ratio and impaired mitochondrial respiration in the striatum of R6/2 mice. Taken together, these findings indicate the crucial role of ENT2 in energy homeostasis, in which ENT2 deletion further impairs mitochondrial bioenergetics and deteriorates motor function in R6/2 mice.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Animals , Humans , Mice , Adenosine Triphosphate , Disease Models, Animal , Disease Progression , Equilibrative-Nucleoside Transporter 2 , Huntington Disease/genetics , Huntington Disease/metabolism , Mice, Transgenic , Models, Theoretical
2.
Acta Neuropathol Commun ; 9(1): 112, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34158119

ABSTRACT

Tau pathology is instrumental in the gradual loss of neuronal functions and cognitive decline in tauopathies, including Alzheimer's disease (AD). Earlier reports showed that adenosine metabolism is abnormal in the brain of AD patients while consequences remained ill-defined. Herein, we aimed at investigating whether manipulation of adenosine tone would impact Tau pathology, associated molecular alterations and subsequent neurodegeneration. We demonstrated that treatment with an inhibitor (J4) of equilibrative nucleoside transporter 1 (ENT1) exerted beneficial effects in a mouse model of Tauopathy. Treatment with J4 not only reduced Tau hyperphosphorylation but also rescued memory deficits, mitochondrial dysfunction, synaptic loss, and abnormal expression of immune-related gene signatures. These beneficial effects were particularly ascribed to the ability of J4 to suppress the overactivation of AMPK (an energy reduction sensor), suggesting that normalization of energy dysfunction mitigates neuronal dysfunctions in Tauopathy. Collectively, these data highlight that targeting adenosine metabolism is a novel strategy for tauopathies.


Subject(s)
Brain/drug effects , Brain/pathology , Equilibrative Nucleoside Transporter 1/antagonists & inhibitors , Tauopathies/metabolism , Tauopathies/pathology , Animals , Brain/metabolism , Disease Models, Animal , Humans , Mice
3.
Brain Behav Immun ; 84: 59-71, 2020 02.
Article in English | MEDLINE | ID: mdl-31751618

ABSTRACT

Neuroinflammation is a common pathological feature of many brain diseases and is a key mediator of blood-brain barrier (BBB) breakdown and neuropathogenesis. Adenosine is an endogenous immunomodulator, whose brain extracellular level is tightly controlled by equilibrative nucleoside transporters-1 (ENT1) and ENT2. This study was aimed to investigate the role of ENTs in the modulation of neuroinflammation and BBB function. The results showed that mRNA level of Ent2 was significantly more abundant than that of Ent1 in the brain (hippocampus, cerebral cortex, striatum, midbrain, and cerebellum) of wild-type (WT) mice. Ent2-/- mice displayed higher extracellular adenosine level in the hippocampus than their littermate controls. Repeated lipopolysaccharide (LPS) treatment induced microglia activation, astrogliosis and upregulation of proinflammatory cytokines, along with aberrant BBB phenotypes (including reduced tight junction protein expression, pericyte loss, and immunoglobulin G extravasation) and neuronal apoptosis in the hippocampus of WT mice. Notably, Ent2-/- mice displayed significant resistance to LPS-induced neuroinflammation, BBB breakdown, and neurotoxicity. These findings suggest that Ent2 is critical for the modulation of brain adenosine tone and deletion of Ent2 confers protection against LPS-induced neuroinflammation and neurovascular-associated injury.


Subject(s)
Blood-Brain Barrier/metabolism , Equilibrative-Nucleoside Transporter 2/deficiency , Gene Deletion , Lipopolysaccharides , Adenosine/metabolism , Animals , Blood-Brain Barrier/physiopathology , Equilibrative Nucleoside Transporter 1/genetics , Equilibrative Nucleoside Transporter 1/metabolism , Equilibrative-Nucleoside Transporter 2/genetics , Equilibrative-Nucleoside Transporter 2/metabolism , Inflammation , Male , Mice , Neuroimmunomodulation
SELECTION OF CITATIONS
SEARCH DETAIL
...