Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Oncol ; 63(6)2023 Dec.
Article in English | MEDLINE | ID: mdl-37888615

ABSTRACT

Acidosis is a hallmark of the tumor microenvironment caused by the metabolic switch from glucose oxidative phosphorylation to glycolysis. It has been associated with tumor growth and progression; however, the precise mechanism governing how acidosis promotes metastatic dissemination has yet to be elucidated. In the present study, a long­term acidosis model was established using patient­derived lung cancer cells, to identify critical components of metastatic colonization via transcriptome profiling combined with both in vitro and in vivo functional assays, and association analysis using clinical samples. Xenograft inoculates of 1 or 10 acidotic cells mimicking circulating tumor cell clusters were shown to exhibit increased tumor incidence compared with their physiological pH counterparts. Transcriptomics revealed that profound remodeling of the extracellular matrix (ECM) occurred in the acidotic cells, including upregulation of the integrin subunit α­4 (ITGA4) gene. In clinical lung cancer, ITGA4 expression was found to be upregulated in primary tumors with metastatic capability, and this trait was retained in the corresponding secondary tumors. Expression of ITGA4 was markedly upregulated around the vasculogenic mimicry structures of the acidotic tumors, while acidotic cells exhibited a higher ability of vasculogenic mimicry in vitro. Acidosis was also found to induce the enrichment of side population cells, suggesting an enhanced resistance to noxious attacks of the tumor microenvironment. Taken together, these results demonstrated that acidosis actively contributed to tumor metastatic colonization, and novel mechanistic insights into the therapeutic management and prognosis of lung cancer were discussed.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/genetics , Neovascularization, Pathologic/drug therapy , Prognosis , Lung/pathology , Extracellular Matrix/metabolism , Cell Line, Tumor , Tumor Microenvironment
2.
Cancer Sci ; 114(10): 3857-3872, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37525561

ABSTRACT

The suppressive regulatory T cells (Treg) are frequently upregulated in cancer patients. This study aims to demonstrate the hypothesis that arecoline could induce the secretion of mitochondrial (mt) DNA D-loop and programmed cell death-ligand 1 (PD-L1) in extracellular vesicles (EVs), and attenuate T-cell immunity by upregulated Treg cell numbers. However, the immunosuppression could be reversed by whole glucan particle (WGP) ß-glucan in oral squamous cell (OSCC) patients. Arecoline-induced reactive oxygen specimen (ROS) production and cytosolic mtDNA D-loop were analyzed in OSCC cell lines. mtDNA D-loop, PD-L1, IFN-γ, and Treg cells were also identified for the surgical specimens and sera of 60 OSCC patients. We demonstrated that higher mtDNA D-loop, PD-L1, and Treg cell numbers were significantly correlated with larger tumor size, nodal metastasis, advanced clinical stage, and areca quid chewing. Furthermore, multivariate analysis confirmed that higher mtDNA D-loop levels and Treg cell numbers were unfavorable independent factors for survival. Arecoline significantly induced cytosolic mtDNA D-loop leakage and PD-L1 expression, which were packaged by EVs to promote immunosuppressive Treg cell numbers. However, WGP ß-glucan could elevate CD4+ and CD8+ T-cell numbers, mitigate Treg cell numbers, and promote oral cancer cell apoptosis. To sum up, arecoline induces EV production carrying mtDNA D-loop and PD-L1, and in turn elicits immune suppression. However, WGP ß-glucan potentially enhances dual effects on T-cell immunity and cell apoptosis and we highly recommend its integration with targeted and immune therapies against OSCC.


Subject(s)
Carcinoma, Squamous Cell , Extracellular Vesicles , Head and Neck Neoplasms , Mouth Neoplasms , beta-Glucans , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , Arecoline , B7-H1 Antigen/genetics , Mouth Neoplasms/pathology , Glucans , beta-Glucans/pharmacology , DNA, Mitochondrial/genetics , Immunosuppression Therapy , Extracellular Vesicles/metabolism
3.
J Mater Chem B ; 7(45): 7184-7194, 2019 12 07.
Article in English | MEDLINE | ID: mdl-31657427

ABSTRACT

The present study investigates the properties and use as wound-dressing materials of hydrogels made of negatively charged 3-sulfopropyl methacrylate (SA) and positively charged [2-(methacryloyloxy)ethyl]trimethylammonium (TMA) to form poly(SA-co-TMA) gels with/without a charge bias. Their actual chemical compositions were ascertained by XPS which revealed a fair control of the final gel composition obtained from the initial molar ratio in the reaction solution. Zeta potential measurements confirmed the controlled charge bias on which swelling ratio was found to strongly depend, i.e., positively charged or negatively charged gels have a higher tendency to swell than poly(SA-co-TMA) made of 50 mol% of each unit. The anti-biofouling properties were also correlated to the charge bias, i.e., negatively charged and neutral gels resisted well to biofouling by fibrinogen and whole blood, and were much less cytotoxic than their positive counterparts. Applied as wound-dressing materials onto diabetic wounds, it was found that wound closure was almost reached after 21 days, regardless of the gel composition. However, histological analysis revealed that positively charged gels accelerated hemostasis, while neutral gels, much less cytotoxic, were more efficient in the following stages during which the granulation layer and dermis were fully remodelled leading to a dense fibroblast population and thick collagen with no sign of inflammation. All in all, this study sheds light on the effects of charge bias on different wound healing stages and proves the efficiency of pseudo-zwitterionic poly(SA-co-TMA) to heal diabetic wounds for the first time.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Hydrogels/pharmacology , Hypoglycemic Agents/pharmacology , Methacrylates/pharmacology , Polymers/pharmacology , Polymethacrylic Acids/pharmacology , Quaternary Ammonium Compounds/pharmacology , Wound Healing/drug effects , Adult , Alloxan/administration & dosage , Animals , Cell Line , Diabetes Mellitus, Experimental/chemically induced , Gels/chemical synthesis , Gels/chemistry , Gels/pharmacology , Healthy Volunteers , Humans , Hydrogels/chemical synthesis , Hydrogels/chemistry , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Injections, Intravenous , Kinetics , Male , Methacrylates/chemistry , Particle Size , Polymers/chemistry , Polymethacrylic Acids/chemistry , Quaternary Ammonium Compounds/chemistry , Rats , Rats, Wistar , Surface Properties
4.
Nat Commun ; 5: 3472, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24668028

ABSTRACT

Cancer stem cells (CSCs) are a promising target for treating cancer, yet how CSC plasticity is maintained in vivo is unclear and is difficult to study in vitro. Here we establish a sustainable primary culture of Oct3/4(+)/Nanog(+) lung CSCs fed with CD90(+) cancer-associated fibroblasts (CAFs) to further advance our knowledge of preserving stem cells in the tumour microenvironment. Using transcriptomics we identify the paracrine network by which CAFs enrich CSCs through de-differentiation and reacquisition of stem cell-like properties. Specifically, we find that IGF1R signalling activation in cancer cells in the presence of CAFs expressing IGF-II can induce Nanog expression and promote stemness. Moreover, this paracrine signalling predicts overall and relapse-free survival in stage I non-small cell lung cancer (NSCLC) patients. IGF-II/IGF1R signalling blockade inhibits Nanog expression and attenuates cancer stem cell features. Our data demonstrate that CAFs constitute a supporting niche for cancer stemness, and targeting this paracrine signalling may present a new therapeutic strategy for NSCLC.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Squamous Cell/genetics , Fibroblasts/metabolism , Lung Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Paracrine Communication , Small Cell Lung Carcinoma/genetics , Adenocarcinoma/metabolism , Aged , Aged, 80 and over , Animals , Carcinoma, Squamous Cell/metabolism , Cells, Cultured , Female , Gene Expression Profiling , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Lung Neoplasms/metabolism , Male , Mice , Middle Aged , Nanog Homeobox Protein , Neoplasm Transplantation , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Receptor, IGF Type 1 , Receptors, Somatomedin/genetics , Receptors, Somatomedin/metabolism , Small Cell Lung Carcinoma/metabolism , Thy-1 Antigens/metabolism , Tumor Microenvironment
5.
Biomed Opt Express ; 1(4): 1060-1073, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-21258530

ABSTRACT

The characterization results of the localized surface plasmon resonance (LSPR) of Au nanorings (NRs) with optical coherence tomography (OCT) are first demonstrated. Then, the diffusion behaviors of Au NRs in mouse liver samples tracked with OCT are shown. For such research, aqueous solutions of Au NRs with two different localized surface plasmon resonance (LSPR) wavelengths are prepared and characterized. Their LSPR-induced extinction cross sections at 1310 nm are estimated with OCT scanning of solution droplets on coverslip to show reasonably consistent results with the data at individual LSPR wavelengths and at 1310 nm obtained from transmission measurements of Au NR solutions and numerical simulations. The resonant and non-resonant Au NRs are delivered into mouse liver samples for tracking Au NR diffusion in the samples through continuous OCT scanning for one hour. With resonant Au NRs, the average A-mode scan profiles of OCT scanning at different delay times clearly demonstrate the extension of strong backscattering depth with time. The calculation of speckle variance among successive OCT scanning images, which is related to the local transport speed of Au NRs, leads to the illustrations of downward propagation and spreading of major Au NR motion spot with time.

SELECTION OF CITATIONS
SEARCH DETAIL