Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 161: 97-106, 2019 May.
Article in English | MEDLINE | ID: mdl-30822625

ABSTRACT

Antrodia cinnamomea, an endemic fungus species of Taiwan, has long been used as a luxurious dietary supplement to enhance liver functions and as a remedy for various cancers. Antroquinonol (AQ), identified from the mycelium of A. cinnamomea, is currently in phase II clinical trials in the USA and Taiwan for the treatment of non-small-cell lung cancer. In the previous studies, we have demonstrated that AQ and 4-acetylantroquinonol B (4-AAQB) utilize orsellinic acid, via polyketide pathway, as the ring precursor, and their biosynthetic sequences are similar to those of coenzyme Q. In order to test 4-hydroxybenzoic acid (4-HBA), synthesized via shikimate pathway, is the ring precursor of AQ analogs, the strategy of metabolic labeling with stable isotopes was applied in this study. Here we have confirmed that 4-HBA serves as the ring precursor for AQ but not a precursor of 4-AAQB. Experimental results indicated that A. cinnamomea preferentially utilizes endogenous 4-HBA via shikimate pathway for AQ biosynthesis. Exogenous tyrosine and phenylalanine can be utilized for AQ biosynthesis when shikimate pathway is blocked by glyphosate. The benzoquinone ring of 4-AAQB is synthesized only via polyketide pathway, but that of AQ is synthesized via both polyketide pathway and shikimate pathway. The precursor-products relationships diagram of AQ and 4-AAQB in A. cinnamomea are proposed based on the experimental findings.


Subject(s)
Antrodia/chemistry , Parabens/metabolism , Ubiquinone/analogs & derivatives , Antrodia/metabolism , Molecular Structure , Parabens/chemistry , Ubiquinone/biosynthesis , Ubiquinone/chemistry
2.
J Agric Food Chem ; 65(1): 74-86, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-28001060

ABSTRACT

Antroquinonol (AQ) and 4-acetylantroquinonol B (4-AAQB), isolated from the mycelium of Antrodia cinnamomea, have a similar chemical backbone to coenzyme Q (CoQ). Based on the postulation that biosynthesis of both AQ and 4-AAQB in A. cinnamomea starts from the polyketide pathway, we cultivated this fungus in a culture medium containing [U-13C]oleic acid, and then we analyzed the crude extracts of the mycelium using UHPLC-MS. We found that AQ and 4-AAQB follow similar biosynthetic sequences as CoQ. Obvious [13C2] fragments on the ring backbone were detected in the mass spectrum for [13C2]AQ, [13C2]4-AAQB, and their [13C2] intermediates found in this study. The orsellinic acid, formed from acetyl-CoA and malonyl-CoA via the polyketide pathway, was found to be a novel benzoquinone ring precursor for AQ and 4-AAQB. The identification of endogenously synthesized farnesylated intermediates allows us to postulate the routes of AQ and 4-AAQB biosynthesis in A. cinnamomea.


Subject(s)
4-Butyrolactone/analogs & derivatives , Antrodia/metabolism , Polyketides/metabolism , Resorcinols/metabolism , Ubiquinone/analogs & derivatives , 4-Butyrolactone/biosynthesis , 4-Butyrolactone/chemistry , Antrodia/chemistry , Biosynthetic Pathways , Cyclohexanones/chemistry , Fungal Proteins/metabolism , Molecular Structure , Mycelium/chemistry , Mycelium/metabolism , Ubiquinone/biosynthesis , Ubiquinone/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...