Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Microdevices ; 17(1): 11, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25653056

ABSTRACT

We present a new double-sided, single-chip monolithic integration scheme to integrate the CMOS circuits and MEMS structures by using through-silicon-via (TSV). Neural sensing applications were chosen as the implementation example. The proposed heterogeneous device integrates standard 0.18 µm CMOS technology, TSV and neural probe array into a compact single chip device. The neural probe array on the back-side of the chip is connected to the CMOS circuits on the front-side of the chip by using low-parasitic TSVs through the chip. Successful fabrication results and detailed characterization demonstrate the feasibility and performance of the neural probe array, TSV and readout circuitry. The fabricated device is 5 × 5 mm(2) in area, with 16 channels of 150 µm-in-length neural probe array on the back-side, 200 µm-deep TSV through the chip and CMOS circuits on the front-side. Each channel consists of a 5 × 6 probe array, 3 × 14 TSV array and a differential-difference amplifier (DDA) based analog front-end circuitry with 1.8 V supply, 21.88 µW power consumption, 108 dB CMRR and 2.56 µVrms input referred noise. In-vivo long term implantation demonstrated the feasibility of presented integration scheme after 7 and 58 days of implantation. We expect the conceptual realization can be extended for higher density recording array by using the proposed method.


Subject(s)
Electrodes, Implanted , Lab-On-A-Chip Devices
2.
IEEE Trans Biomed Circuits Syst ; 8(6): 810-23, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25576575

ABSTRACT

Heterogeneously integrated and miniaturized neural sensing microsystems are crucial for brain function investigation. In this paper, a 2.5D heterogeneously integrated bio-sensing microsystem with µ-probes and embedded through-silicon-via (TSVs) is presented for high-density neural sensing applications. This microsystem is composed of µ-probes with embedded TSVs, 4 dies and a silicon interposer. For capturing 16-channel neural signals, a 24 × 24 µ-probe array with embedded TSVs is fabricated on a 5×5 mm(2) chip and bonded on the back side of the interposer. Thus, each channel contains 6 × 6 µ -probes with embedded TSVs. Additionally, the 4 dies are bonded on the front side of the interposer and designed for biopotential acquisition, feature extraction and classification via low-power analog front-end (AFE) circuits, area-power-efficient analog-to-digital converters (ADCs), configurable discrete wavelet transforms (DWTs), filters, and a MCU. An on-interposer bus ( µ-SPI) is designed for transferring data on the interposer. Finally, the successful in-vivo test demonstrated the proposed 2.5D heterogeneously integrated bio-sensing microsystem. The overall power of this microsystem is only 676.3 µW for 16-channel neural sensing.


Subject(s)
Neurophysiological Monitoring/instrumentation , Neurophysiological Monitoring/methods , Remote Sensing Technology/instrumentation , Remote Sensing Technology/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...