Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 355
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4664, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821968

ABSTRACT

Using a transfer printing technique, we imprint a layer of a designated near-infrared fluorescent dye BTP-eC9 onto a thin layer of Pt(II) complex, both of which are capable of self-assembly. Before integration, the Pt(II) complex layer gives intense deep-red phosphorescence maximized at ~740 nm, while the BTP-eC9 layer shows fluorescence at > 900 nm. Organic light emitting diodes fabricated under the imprinted bilayer architecture harvest most of Pt(II) complex phosphorescence, which undergoes triplet-to-singlet energy transfer to the BTP-eC9 dye, resulting in high-intensity hyperfluorescence at > 900 nm. As a result, devices achieve 925 nm emission with external quantum efficiencies of 2.24% (1.94 ± 0.18%) and maximum radiance of 39.97 W sr-1 m-2. Comprehensive morphology, spectroscopy and device analyses support the mechanism of interfacial energy transfer, which also is proved successful for BTPV-eC9 dye (1022 nm), making bright and far-reaching the prospective of hyperfluorescent OLEDs in the near-infrared region.

2.
Small Methods ; : e2400572, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741547

ABSTRACT

This research addresses the pH-dependency limitation in electrocatalytic hydrogen evolution reactions (HER) by creating heterostructures through the chemical bonding between 2D-dichalcogenides and V4C3Tx (T = OH, O) planes. The one-step solvothermal synthesis employed in this study constructs a synergistically interacted 1T phase of, e.g., MoS2 and V4C3Tx MXene, demonstrating an omnidirectional improvement on catalytic stability, active site exposure, surface area enlargement, electrical conductivity, and hence enhancement of water dissociation activities. Despite the notable progress in creating hydrogen production catalysts with ground breaking performances, a significant gap remains in the availability of catalysts capable of functioning effectively under high current densities. The catalyst 1T MoS2@V4C3Tx shows remarkable activities under the current density of 1000 mA cm-2, which require overpotentials of 16, 24, and 37 mV in 0.5 m H2SO4, 1 m KOH, and 0.1 m PBS electrolytes, respectively at 10 mA cm-2, and exhibits excellent HER performance with small overpotentials of 103.16 and 138 mV to achieve current densities of 500 and 1000 mA cm-2, respectively, with outstanding stability for 1000 cylic voltammetric cycle HER test without degradation in acidic media. Enhanced HER performance has also been observed in other 2D-dichalcogenides/V4C3Tx heterostructures, providing prospects for phase-engineered dichalcogenides/fluorine-free V4C3Tx composites for pH-universal HER.

3.
Angew Chem Int Ed Engl ; 63(23): e202403317, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38578721

ABSTRACT

We demonstrate directed translocation of ClO4 - anions from cationic to neutral binding site along the synthetized BPym-OH dye molecule that exhibits coupled excited-state intramolecular proton-transfer (ESIPT) and charge-transfer (CT) reaction (PCCT). The results of steady-state and time-resolved spectroscopy together with computer simulation and modeling show that in low polar toluene the excited-state redistribution of electronic charge enhanced by ESIPT generates the driving force, which is much stronger than by CT reaction itself and provides more informative gigantic shifts of fluorescence spectra signaling on ultrafast ion motion. The associated with ion translocation red-shifted fluorescence band (at 750 nm, extending to near-IR region) appears at the time ~83 ps as a result of electrochromic modulation of PCCT reaction. It occurs at substantial delay to PCCT that displayed fluorescence band at 640 nm and risetime of <200 fs. Thus, it becomes possible to visualize the manifestations of light-triggered ion translocation and of its driving force by fluorescence techniques and to separate them in time and energy domains.

4.
Chemistry ; : e202401063, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654592

ABSTRACT

14,14'-Bidibenzo[a,j]anthracenes (BDBAs) were prepared by iridium-catalyzed annulation of 5,5'-biterphenylene with alkynes. The molecular geometries of overcrowded BDBAs were verified by X-ray crystallography. The two dibenzo[a,j]anthryl moieties are connected through the sterically hindered 14 positions, resulting in highly distorted molecular halves. The conformation with a small twist angle between two molecular halves can minimize steric conflicts between the substituents at 1 and 13 positions and the carbon atoms of the central axis, as well as steric clashes between those substituents. One such example is octafluoro-substituted BDBA, where the interplanar angle between two anthryl moieties is approximately 31° (currently the lowest reported value, cf. 81° in 9,9'-bianthracene). The intramolecular interactions and electronic couplings between two molecular halves resulted in upfield 1H NMR signals, redshifted absorption and emission bands, and a reduced HOMO-LUMO gap. Photodynamic investigations on BDBAs indicated that the formation of the conventional symmetry-breaking charge transfer (SBCT) state was suspended by restricted rocking around the central C-C bond. Such a mechanism associated with this highly constrained conformation was examined for the first time.

6.
Angew Chem Int Ed Engl ; 63(16): e202401103, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38412017

ABSTRACT

Singlet fission (SF) holds great promise for current photovoltaic technologies, where tetracenes, with their relatively high triplet energies, play a major role for application in silicon-based solar cells. However, the SF efficiencies in tetracene dimers are low due to the unfavorable energetics of their singlet and triplet energy levels. In the solid state, tetracene exhibits high yields of triplet formation through SF, raising great interest about the underlying mechanisms. To address this discrepancy, we designed and prepared a novel molecular system based on a hexaphenylbenzene core decorated with 2 to 6 tetracene chromophores. The spatial arrangement of tetracene units, induced by steric hindrance in the central part, dictates through-space coupling, making it a relevant model for solid-state chromophore organization. We then revealed a remarkable increase in SF quantum yield with the number of tetracenes, reaching quantitative (196 %) triplet pair formation in hexamer. We observed a short-lived correlated triplet pair and limited magnetic effects, indicating ineffective triplet dissociation in these through-space coupled systems. These findings emphasize the crucial role of the number of chromophores involved and the interchromophore arrangement for the SF efficiency. The insights gained from this study will aid designing more efficient and technology-compatible SF systems for applications in photovoltaics.

7.
Angew Chem Int Ed Engl ; 63(10): e202317571, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38230818

ABSTRACT

Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and their deuterated analogues D-3-f and DPh-3-f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H-3-f and D-3-f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh-3-f (800 nm, 50 %) and DPh-3-f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near-infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D-3-f and DPh-3-f emitters attain EQEmax of 15.5 % (radiance 31,287 mW Sr-1 m-2 ) and 16.6 % (radiance of 32,279 mW Sr-1 m-2 ) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm.

8.
J Am Chem Soc ; 146(5): 3125-3135, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38288596

ABSTRACT

The chapter on the thiol-related hydrogen bond (H-bond) and its excited-state intramolecular proton-transfer (ESIPT) reaction was recently opened where compound 4'-diethylamino-3-mercaptoflavone (3NTF) undergoes ESIPT in both cyclohexane solution and solid, giving a 710 nm tautomer emission with an anomalously large Stokes shift of 12,230 cm-1. Considering the thiol H-bond to be unconventional compared to the conventional Pauling-type -OH or -NH H-bond, it is thus essential and timely to probe its fundamental difference between their ESIPT. However, thiol-associated ESIPT tends to be nonemissive due to the dominant nπ* character of the tautomeric lowest excited state. Herein, based on the 3-mercaptoflavone scaffold and π-elongation concept, a new series of 4'-substituted-7-diethylamino-3-mercaptoflavones, NTFs, was designed and synthesized with varied H-bond strength and 690-720 nm tautomeric emission upon ultraviolet (UV) excitation in cyclohexane. The order of their H-bonding strength was experimentally determined to be N-NTF < O-NTF < H-NTF < F-NTF, while the rate of -SH ESIPT measured by fluorescence upconversion was F-NTF (398 fs)-1 < H-NTF (232 fs)-1 < O-NTF (123 fs)-1 < N-NTF (101 fs)-1 in toluene. Unexpectedly, the strongest H-bonded F-NTF gives the slowest ESIPT, which does not conform to the traditional ESIPT model. The results are rationalized by the trend of carbonyl oxygen basicity rather than -SH acidity. Namely, the thiol acidity relevant to the H-bond strength plays a minor role in the driving force of ESIPT. Instead, the proton-accepting strength governs ESIPT. That is to say, the noncanonical thiol H-bonding system undergoes an unconventional type of ESIPT.

9.
Nat Chem ; 16(1): 98-106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37884666

ABSTRACT

Exciplex-forming systems that display thermally activated delayed fluorescence are widely used for fabricating organic light-emitting diodes. However, their further development can be hindered through a lack of structural and thermodynamic characterization. Here we report the generation of inclusion complexes between a cage-like, macrocyclic, electron-accepting host (A) and various N-methyl-indolocarbazole-based electron-donating guests (D), which exhibit exciplex-like thermally activated delayed fluorescence via a through-space electron-transfer process. The D/A cocrystals are fully resolved by X-ray analyses, and UV-visible titration data show their formation to be an endothermic and entropy-driven process. Moreover, their emission can be fine-tuned through the molecular orbitals of the donor. Organic light-emitting diodes were fabricated using one of the D/A systems, and the maximum external quantum efficiency measured was 15.2%. An external quantum efficiency of 10.3% was maintained under a luminance of 1,000 cd m-2. The results show the potential of adopting inclusion complexation to better understand the relationships between the structure, formation thermodynamics and properties of exciplexes.

10.
Chemistry ; 30(11): e202303523, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37997021

ABSTRACT

A new series of biaryls, bi-linear-terphenylenes (BLTPs), were prepared using the tert-butyllithium-mediated cyclization as the key synthetic step. The three-dimensional structures of the studied compounds were verified using X-ray crystallography and DFT calculations. Tetraaryl(ethynyl)-substituted BLTPs are highly crowded molecules, and the internal rotation around the central C-C bond is restricted due to a high barrier (>50 kcal/mol). These structures contain several aryl/terphenylenyl/aryl sandwiches, where the through-space π-π (TSPP) interactions are strongly reflected in the shielding of 1 H NMR chemical shifts, reduction of oxidation potentials, increasing aromaticity of the central six-membered ring and decreasing antiaromaticity of the four-membered rings in a terphenylenyl moiety based on NICS(0) and iso-chemical shielding surfaces. Despite the restricted C-C bond associated intramolecular TSPP interactions for BLTPs in the ground state, to our surprise, the electronic coupling between two linear terphenylenes (LTPs) in BLTPs in the excited state is weak, so that the excited-state behavior is dominated by the corresponding monomeric LTPs. In other words, all BLTPs undergo ultrafast relaxation dynamics via strong exciton-vibration coupling, acting as a blue-light absorber with essentially no emission.

11.
Phys Chem Chem Phys ; 25(42): 28824-28828, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37853830

ABSTRACT

Quadrupolar bis-coumarins bearing dialkylamino groups, prepared by a double Pechmann reaction and subsequent oxidation, strongly emit yellow-orange light. Comparison with non-substituted analogs reveals that, the photophysical properties of the conjugated bis-coumarins are controlled both by the dialkylamino substituents and by the π-system. Analogous but non-conjugated bis-coumarins emit blue light both in solution and in crystalline state. Unusually fast oxidation process in the crystalline state is responsible for the presence of two bands in their solid-state emission. Two-center, charge-transfer transition from an orbital delocalized on the entire molecule to the central benzene ring is responsible for photophysical properties.

12.
Nat Commun ; 14(1): 5248, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37640729

ABSTRACT

The rotation of a C = C bond in an alkene can be efficiently accelerated by creating the high-strain ground state and stabilizing the transition state of the process. Herein, the synthesis, structures, and properties of several highly twisted alkenes are comprehensively explored. A facile and practical synthetic approach to target molecules is developed. The twist angles and lengths of the central C = C bonds in these molecules are 36-58° and 1.40-1.43 Å, respectively, and confirmed by X-ray crystallography and DFT calculations. A quasi-planar molecular half with the π-extended substituents delivers a shallow rotational barrier (down to 2.35 kcal/mol), indicating that the rotation of the C = C bond is as facile as that of the aryl-aryl bond in 2-flourobiphenyl. Other versatile and unique properties of the studied compounds include a broad photoabsorption range (from 250 up to 1100 nm), a reduced HOMO-LUMO gap (1.26-1.68 eV), and a small singlet-triplet energy gap (3.65-5.68 kcal/mol).

13.
Angew Chem Int Ed Engl ; 62(40): e202309831, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37594921

ABSTRACT

Self-assembled monolayers (SAMs) offer the advantage of facile interfacial modification, leading to significant improvements in device performance. In this study, we report the design and synthesis of a new series of carboxylic acid-functionalized porphyrin derivatives, namely AC-1, AC-3, and AC-5, and present, for the first time, a strategy to exploit the large π-moiety of porphyrins as a backbone for interfacing the indium tin oxide (ITO) electrode and perovskite active layer in an inverted perovskite solar cell (PSC) configuration. The electron-rich nature of porphyrins facilitates hole transfer and the formation of SAMs, resulting in a dense surface that minimizes defects. Comprehensive spectroscopic and dynamic studies demonstrate that the double-anchored AC-3 and AC-5 enhance SAMs on ITO, passivate the perovskite layer, and function as conduits to facilitate hole transfer, thus significantly boosting the performance of PSCs. The champion inverted PSC employing AC-5 SAM achieves an impressive solar efficiency of 23.19 % with a high fill factor of 84.05 %. This work presents a novel molecular engineering strategy for functionalizing SAMs to tune the energy levels, molecular dipoles, packing orientations to achieve stable and efficient solar performance. Importantly, our comprehensive investigation has unraveled the associated mechanisms, offering valuable insights for future advancements in PSCs.

15.
J Am Chem Soc ; 145(32): 18104-18114, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37534396

ABSTRACT

Aryl transfer between heteroatoms was photochemically available through radical initiation followed by a bimolecular reaction. However, such an excited-state reaction has rarely been reported through a photoinduced intramolecular pathway in the π-conjugated systems. Herein, we found, for the first time, a clean photoinduced intramolecular aryl shift for imidazolyl-quinoline derivatives 2NQ (imidazophenanthrene) and 4NQX (imidazophenanthroline), of which the photoproducts are thermally reversible. Upon light irradiation of the studied compounds in solution, an appreciable blue fluorescence along with a gradual change in color appearance was observed, the photoluminescence and photoconversion quantum yields of which were shown to be competitive in the same excited state. We were able to harness the photoconversion quantum yields of the NQ compounds with facile electronic modifications. These, in combination with time-resolved studies on the NQ compounds, gave an oxygen-insensitive aryl transfer rate within 1-100 ns. The anomalously slow intramolecular reaction rates were further proven to be associated with the ∼5.0 kcal/mol transition free energy. The photoproducts NQ_rs were isolated, identified by X-ray analyses, and also shown to demonstrate anti-Vavilov reverse reactions back to the NQ compounds in the higher-lying excited state. The discovery of photoinduced intramolecular aryl transfer paves a new pathway in the synthetic field, which may also be extended and far-reaching to solar-chemical storage under an appropriate design strategy.

16.
Chem Sci ; 14(26): 7237-7247, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37416704

ABSTRACT

Solvent (e.g., water)-catalyzed proton transfer (SCPT) via the relay of hydrogen (H)-bonds plays a key role in proton migration. In this study, a new class of 1H-pyrrolo[3,2-g]quinolines (PyrQs) and their derivatives were synthesized, with sufficient separation of the pyrrolic proton donating and pyridinic proton accepting sites to probe excited-state SCPT. There was dual fluorescence for all PyrQs in methanol, i.e., normal (PyrQ) and tautomer 8H-pyrrolo[3,2-g]quinoline (8H-PyrQ) emissions. The fluorescence dynamics unveiled a precursor (PyrQ) and successor (8H-PyrQ) relationship and the correlation of an increasing overall excited-state SCPT rate (kSCPT) upon increasing the N(8)-site basicity. kSCPT can be expressed by the coupling reaction kSCPT = Keq × kPT, where kPT denotes the intrinsic proton tunneling rate in the relay and Keq denotes the pre-equilibrium between randomly and cyclically H-bonded solvated PyrQs. Molecular dynamics (MD) simulation defined the cyclic PyrQs and analyzed the H-bond and molecular arrangement over time, which showed the cyclic PyrQs incorporating ≧3 methanol molecules. These cyclic H-bonded PyrQs are endowed with a relay-like proton transfer rate, kPT. MD simulation estimated an upper-limited Keq value of 0.02-0.03 for all studied PyrQs. When there was little change in Keq, the distinct kSCPT values for PyrQs were at different kPT values, which increased as the N(8) basicity increased, which was induced by the C(3)-substituent. kSCPT was subject to a deuterium isotope effect, where the kSCPT of 1.35 × 1010 s-1 for PyrQ-D in CH3OD was 1.68 times slower than that (2.27 × 1010 s-1) of PyrQ in CH3OH. MD simulation provided a similar Keq for PyrQ and PyrQ-D, leading to different proton tunneling rates (kPT) between PyrQ and PyrQ-D.

17.
Chemistry ; 29(44): e202301073, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37212544

ABSTRACT

Phosphonium-based compounds gain attention as promising photofunctional materials. As a contribution to the emerging field, we present a series of donor-acceptor ionic dyes, which were constructed by tailoring phosphonium (A) and extended π-NR2 (D) fragments to an anthracene framework. The alteration of the π-spacer of electron-donating substituents in species with terminal -+ PPh2 Me groups exhibits a long absorption wavelength up to λabs =527 nm in dichloromethane and shifted the emission to the near-infrared (NIR) region (λ=805 nm for thienyl aniline donor), although at low quantum yield (Φ<0.01). In turn, the introduction of a P-heterocyclic acceptor substantially narrowed the optical bandgap and improved the efficiency of fluorescence. In particular, the phospha-spiro moiety allowed to attain NIR emission (797 nm in dichloromethane) with fluorescence efficiency as high as Φ=0.12. The electron-accepting property of the phospha-spiro constituent outperformed that of the monocyclic and terminal phosphonium counterparts, illustrating a promising direction in the design of novel charge-transfer chromophores.

18.
Angew Chem Int Ed Engl ; 62(36): e202305108, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37227225

ABSTRACT

Crystalline diphosphonium iodides [MeR2 P-spacer-R2 Me]I with phenylene (1, 2), naphthalene (3, 4), biphenyl (5) and anthracene (6) as aromatic spacers, are photoemissive under ambient conditions. The emission colors (λem values from 550 to 880 nm) and intensities (Φem reaching 0.75) are defined by the composition and substitution geometry of the central conjugated chromophore motif, and the anion-π interactions. Time-resolved and variable-temperature luminescence studies suggest phosphorescence for all the titled compounds, which demonstrate observed lifetimes of 0.46-92.23 µs at 297 K. Radiative rate constants kr as high as 2.8×105  s-1 deduced for salts 1-3 were assigned to strong spin-orbit coupling enhanced by an external heavy atom effect arising from the anion-π charge-transfer character of the triplet excited state. These rates of anomalously fast metal-free phosphorescence are comparable to those of transition metal complexes and organic luminophores that utilize triplet excitons via a thermally activated delayed fluorescence mechanism, making such ionic luminophores a new paradigm for the design of photofunctional and responsive molecular materials.

19.
ACS Appl Mater Interfaces ; 15(17): 21333-21343, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37074734

ABSTRACT

In this study, we designed and synthesized three series of blue emitting homoleptic iridium(III) phosphors bearing 4-cyano-3-methyl-1-phenyl-6-(trifluoromethyl)-benzo[d]imidazol-2-ylidene (mfcp), 5-cyano-1-methyl-3-phenyl-6-(trifluoromethyl)-benzo[d]imidazol-2-ylidene (ofcp), and 1-(3-(tert-butyl)phenyl)-6-cyano-3-methyl-4-(trifluoromethyl)-benzo[d]imidazol-2-ylidene (5-mfcp) cyclometalates, respectively. These iridium complexes exhibit intense phosphorescence in the high energy region of 435-513 nm in the solution state at RT, to which the relatively large T1 → S0 transition dipole moment is beneficial for serving as a pure emitter and an energy donor to the multiresonance thermally activated delayed fluorescence (MR-TADF) terminal emitters via Förster resonance energy transfer (FRET). The resulting OLEDs achieved true blue, narrow bandwidth EL with a max EQE of 16-19% and great suppression of efficiency roll-off with ν-DABNA and t-DABNA. We obtained the FRET efficiency up to 85% using titled Ir(III) phosphors f-Ir(mfcp)3 and f-Ir(5-mfcp)3 to achieve true blue narrow bandwidth emission. Importantly, we also provide analysis on the kinetic parameters involved in the energy transfer processes and, accordingly, propose feasible ways to improve the efficiency roll-off caused by the shortened radiative lifetime of hyperphosphorescence.

20.
Phys Chem Chem Phys ; 25(13): 9115-9122, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36928330

ABSTRACT

In this study, we explore the possibilities of the deactivating pathways of organic thione containing systems through first-principles calculations. We particularly pay attention to the second lying singlet excited state, S2, due to its large energy difference from the lowest lying S1 state in the sulfur-containing systems. Several theoretical models including the previously synthesized thiones and the strategically designed molecules are investigated to search for the basic conjugation unit that exhibits the prospect of S2 fission. Various molecular motifs and different substituents are combined to maneuver the relative alignment of the relevant low excited energy states. The results lead us to conclude that the thione derivatives, under rational and delicate molecular designs, may be engineered to possess a sufficiently high S2-S1 energy gap as high as 2 eV and that these systems may exhibit S2 fission to triplet excitons in the red to near infrared region.

SELECTION OF CITATIONS
SEARCH DETAIL
...