Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 94(12): 127402, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15903960

ABSTRACT

By using a sample of DNA-wrapped single-wall carbon nanotubes strongly enriched in the (6,5) nanotube, photoluminescence emissions observed at special excitation energy values were identified with specific mechanisms of phonon-assisted excitonic absorption and recombination processes associated with (6,5) nanotubes, including one-phonon, two-phonon, and some continuous-luminescence processes. Such detailed processes are not separately identified in three-dimensional semiconducting materials. A general theoretical framework is presented to interpret the experimentally observed phonon-assisted processes in terms of excitonic states.


Subject(s)
DNA/chemistry , Luminescent Measurements/methods , Nanotubes, Carbon/chemistry
2.
J Nanosci Nanotechnol ; 5(2): 209-28, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15853139

ABSTRACT

Several techniques were recently reported for the bulk separation of metallic (M) and semiconducting (S) single wall carbon nanotubes (SWNTs), using optical absorption and resonance Raman spectroscopy (RRS) as a proof of the separation. In the present work, we develop a method for the quantitative evaluation of the M to S separation ratio, and also for the SWNT diameter selectivity of the separation process, based on RRS. The relative changes in the integrated intensities of the radial-breathing mode (RBM) features, with respect to the starting material, yield the diameter probability distribution functions for M and S SWNTs in the separated fractions, accounting for the different resonance conditions of individual SWNTs, while the diameter distribution of the starting material is obtained following the fitting procedure developed by Kuzmany and coworkers. Features other than the RBM are generally less effective for characterization of the separation process for SWNTs.


Subject(s)
Metals/chemistry , Nanotubes, Carbon/chemistry , Spectrum Analysis, Raman/methods , Nanotechnology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...