Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 12(10): e0045723, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855628

ABSTRACT

The complete genome sequence of "Candidatus Phytoplasma cynodontis" strain GY2015, which consists of one 498,922-bp circular chromosome, is presented in this work. This uncultivated plant-pathogenic bacterium is associated with Bermuda grass white leaf disease in Taoyuan, Taiwan.

2.
STAR Protoc ; 4(3): 102520, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37597190

ABSTRACT

Ribosome profiling (Ribo-seq) measures ribosome density along messenger RNA (mRNA) transcripts and is used to estimate the "translational fitness" of a given mRNA in response to environmental or developmental cues with high resolution. Here, we describe a protocol for Ribo-seq in plants adapted for the model plant Arabidopsis thaliana. We describe steps for lysis and nucleolytic digestion and ribosome footprinting. We then detail library construction, sequencing, and data analysis.


Subject(s)
Arabidopsis , Ribosome Profiling , RNA, Messenger/genetics , Arabidopsis/genetics , Ribosomes/genetics , Proteomics
3.
Microbiol Resour Announc ; 12(9): e0044323, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37462364

ABSTRACT

The complete genome sequence of "Candidatus Phytoplasma pruni" strain PR2021, which consists of one 705,138 bp circular chromosome and one 4,757 bp circular plasmid, is presented in this work. This bacterium is associated with poinsettia (Euphorbia pulcherrima) cultivar "Princettia Pink."

4.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37372979

ABSTRACT

TRIM28/KAP1/TIF1ß is a crucial epigenetic modifier. Genetic ablation of trim28 is embryonic lethal, although RNAi-mediated knockdown in somatic cells yields viable cells. Reduction in TRIM28 abundance at the cellular or organismal level results in polyphenism. Posttranslational modifications such as phosphorylation and sumoylation have been shown to regulate TRIM28 activity. Moreover, several lysine residues of TRIM28 are subject to acetylation, but how acetylation of TRIM28 affects its functions remains poorly understood. Here, we report that, compared with wild-type TRIM28, the acetylation-mimic mutant TRIM28-K304Q has an altered interaction with Krüppel-associated box zinc-finger proteins (KRAB-ZNFs). The TRIM28-K304Q knock-in cells were created in K562 erythroleukemia cells by CRISPR-Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein nuclease 9) gene editing method. Transcriptome analysis revealed that TRIM28-K304Q and TRIM28 knockout K562 cells had similar global gene expression profiles, yet the profiles differed considerably from wild-type K562 cells. The expression levels of embryonic-related globin gene and a platelet cell marker integrin-beta 3 were increased in TRIM28-K304Q mutant cells, indicating the induction of differentiation. In addition to the differentiation-related genes, many zinc-finger-proteins genes and imprinting genes were activated in TRIM28-K304Q cells; they were inhibited by wild-type TRIM28 via binding with KRAB-ZNFs. These results suggest that acetylation/deacetylation of K304 in TRIM28 constitutes a switch for regulating its interaction with KRAB-ZNFs and alters the gene regulation as demonstrated by the acetylation mimic TRIM28-K304Q.


Subject(s)
Protein Processing, Post-Translational , Repressor Proteins , Humans , Repressor Proteins/genetics , K562 Cells , Acetylation , Tripartite Motif-Containing Protein 28/genetics , Tripartite Motif-Containing Protein 28/metabolism , Mutation , Gene Expression , Zinc/metabolism
5.
mBio ; 14(2): e0017723, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36877054

ABSTRACT

The type VI secretion system (T6SS) is deployed by many proteobacteria to secrete effector proteins into bacterial competitors for competition or eukaryotic cells for pathogenesis. Agrobacteria, a group of soilborne phytopathogens causing crown gall disease on various plant species, deploy the T6SS to attack closely and distantly related bacterial species in vitro and in planta. Current evidence suggests that the T6SS is not essential for pathogenesis under direct inoculation, but it remains unknown whether the T6SS influences natural disease incidence or the microbial community within crown galls (i.e., the gallobiome). To address these two key questions, we established a soil inoculation method on wounded tomato seedlings that mimics natural infections and developed a bacterial 16S rRNA gene amplicon enrichment sequencing platform. By comparing the Agrobacterium wild-type strain C58 with two T6SS mutants, we demonstrate that the T6SS influences both disease occurrence and gallobiome composition. Based on multiple inoculation trials across seasons, all three strains induced tumors, but the mutants had significantly lower disease incidences. The season of inoculation played a more important role than the T6SS in shaping the gallobiome. The influence of the T6SS was evident in summer, during which two Sphingomonadaceae species and the family Burkholderiaceae were enriched in the gallobiome induced by the mutants. Further in vitro competition and colonization assays demonstrated the T6SS-mediated antagonism to a Sphingomonas sp. R1 strain isolated from tomato rhizosphere in this study. In conclusion, this work demonstrates that the Agrobacterium T6SS promotes tumorigenesis in infection processes and provides competitive advantages in gall-associated microbiota. IMPORTANCE The T6SS is widespread among proteobacteria and used for interbacterial competition by agrobacteria, which are soil inhabitants and opportunistic bacterial pathogens causing crown gall disease in a wide range of plants. Current evidence indicates that the T6SS is not required for gall formation when agrobacteria are inoculated directly on plant wounding sites. However, in natural settings, agrobacteria may need to compete with other bacteria in bulk soil to gain access to plant wounds and influence the microbial community inside crown galls. The role of the T6SS in these critical aspects of disease ecology have remained largely unknown. In this study, we successfully developed a soil inoculation method coupled with blocker-mediated enrichment of bacterial 16S rRNA gene amplicon sequencing, named SI-BBacSeq, to address these two important questions. We provided evidence that the T6SS promotes disease occurrence and influences crown gall microbiota composition by interbacterial competition.


Subject(s)
Bacteria , Type VI Secretion Systems , Humans , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Type VI Secretion Systems/metabolism , Agrobacterium/genetics , Carcinogenesis , Anti-Bacterial Agents , Bacterial Proteins/metabolism
6.
Front Plant Sci ; 13: 903272, 2022.
Article in English | MEDLINE | ID: mdl-35747876

ABSTRACT

N-acetylglucosamine (GlcNAc) is the fundamental amino sugar moiety that is essential for protein glycosylation. UDP-GlcNAc, an active form of GlcNAc, is synthesized through the hexosamine biosynthetic pathway (HBP). Arabidopsis N-acetylglucosamine-1-P uridylyltransferases (GlcNAc1pUTs), encoded by GlcNA.UTs, catalyze the last step in the HBP pathway, but their biochemical and molecular functions are less clear. In this study, the GlcNA.UT1 expression was knocked down by the double-stranded RNA interference (dsRNAi) in the glcna.ut2 null mutant background. The RNAi transgenic plants, which are referred to as iU1, displayed the reduced UDP-GlcNAc biosynthesis, altered protein N-glycosylation and induced an unfolded protein response under salt-stressed conditions. Moreover, the iU1 transgenic plants displayed sterility and salt hypersensitivity, including delay of both seed germination and early seedling establishment, which is associated with the induction of ABA biosynthesis and signaling. These salt hypersensitive phenotypes can be rescued by exogenous fluridone, an inhibitor of ABA biosynthesis, and by introducing an ABA-deficient mutant allele nced3 into iU1 transgenic plants. Transcriptomic analyses further supported the upregulated genes that were involved in ABA biosynthesis and signaling networks, and response to salt stress in iU1 plants. Collectively, these data indicated that GlcNAc1pUTs are essential for UDP-GlcNAc biosynthesis, protein N-glycosylation, fertility, and the response of plants to salt stress through ABA signaling pathways during seed germination and early seedling development.

7.
Int J Mol Sci ; 23(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35743282

ABSTRACT

TRIM28 is a scaffold protein that interacts with DNA-binding proteins and recruits corepressor complexes to cause gene silencing. TRIM28 contributes to physiological functions such as cell growth and differentiation. In the chronic myeloid leukemia cell line K562, we edited TRIM28 using CRISPR/Cas9 technology, and the complete and partial knockout (KO) cell clones were obtained and confirmed using quantitative droplet digital PCR (ddPCR) technology. The amplicon sequencing demonstrated no off-target effects in our gene editing experiments. The TRIM28 KO cells grew slowly and appeared red, seeming to have a tendency towards erythroid differentiation. To understand how TRIM28 controls K562 cell proliferation and differentiation, transcriptome profiling analysis was performed in wild-type and KO cells to identify TRIM28-regulated genes. Some of the RNAs that encode the proteins regulating the cell cycle were increased (such as p21) or decreased (such as cyclin D2) in TRIM28 KO cell clones; a tumor marker, the MAGE (melanoma antigen) family, which is involved in cell proliferation was reduced. Moreover, we found that knockout of TRIM28 can induce miR-874 expression to downregulate MAGEC2 mRNA via post-transcriptional regulation. The embryonic epsilon-globin gene was significantly increased in TRIM28 KO cell clones through the downregulation of transcription repressor SOX6. Taken together, we provide evidence to demonstrate the regulatory network of TRIM28-mediated cell growth and erythroid differentiation in K562 leukemia cells.


Subject(s)
Gene Editing , MicroRNAs , CRISPR-Cas Systems , Cell Proliferation/genetics , Gene Expression , Hemoglobin Subunits/genetics , Hemoglobin Subunits/metabolism , Humans , K562 Cells , Transcription Factors/metabolism , Tripartite Motif-Containing Protein 28/metabolism
8.
Front Microbiol ; 12: 684092, 2021.
Article in English | MEDLINE | ID: mdl-34093511

ABSTRACT

The bacterial genus Xylella contains plant pathogens that are major threats to agriculture in America and Europe. Although extensive research was conducted to characterize different subspecies of Xylella fastidiosa (Xf), comparative analysis at above-species levels was lacking due to the unavailability of appropriate data sets. Recently, a bacterium that causes pear leaf scorch (PLS) in Taiwan was described as the second Xylella species (i.e., Xylella taiwanensis; Xt). In this work, we report the complete genome sequence of Xt type strain PLS229T. The genome-scale phylogeny provided strong support that Xf subspecies pauca (Xfp) is the basal lineage of this species and Xylella was derived from the paraphyletic genus Xanthomonas. Quantification of genomic divergence indicated that different Xf subspecies share ∼87-95% of their chromosomal segments, while the two Xylella species share only ∼66-70%. Analysis of overall gene content suggested that Xt is most similar to Xf subspecies sandyi (Xfs). Based on the existing knowledge of Xf virulence genes, the homolog distribution among 28 Xylella representatives was examined. Among the 11 functional categories, those involved in secretion and metabolism are the most conserved ones with no copy number variation. In contrast, several genes related to adhesins, hydrolytic enzymes, and toxin-antitoxin systems are highly variable in their copy numbers. Those virulence genes with high levels of conservation or variation may be promising candidates for future studies. In summary, the new genome sequence and analysis reported in this work contributed to the study of several important pathogens in the family Xanthomonadaceae.

9.
iScience ; 23(9): 101486, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32891883

ABSTRACT

Physiological trade-offs between mosquito immune response and reproductive capability can arise due to insufficient resource availability. C-type lectin family members may be involved in these processes. We established a GCTL-3-/- mutant Aedes aegypti using CRISPR/Cas9 to investigate the role of GCTL-3 in balancing the costs associated with immune responses to arboviral infection and reproduction. GCTL-3-/- mutants showed significantly reduced DENV-2 infection rate and gut commensal microbiota populations, as well as upregulated JAK/STAT, IMD, Toll, and AMPs immunological pathways. Mutants also had significantly shorter lifespans than controls and laid fewer eggs due to defective germ line development. dsRNA knock-down of Attacin and Gambicin, two targets of the AMPs pathway, partially rescued this reduction in reproductive capabilities. Upregulation of immune response following GCTL-3 knock-out therefore comes at a cost to reproductive fitness. Knock-out of other lectins may further improve our knowledge of the molecular and genetic mechanisms underlying reproduction-immunity trade-offs in mosquitoes.

10.
Front Microbiol ; 10: 1554, 2019.
Article in English | MEDLINE | ID: mdl-31354658

ABSTRACT

Agrobacterium tumefaciens is important in biotechnology due to its ability to transform eukaryotic cells. Although the molecular mechanisms have been studied extensively, previous studies were focused on the model strain C58. Consequently, nearly all of the commonly used strains for biotechnology application were derived from C58 and share similar host ranges. To overcome this limitation, better understanding of the natural genetic variation could provide valuable insights. In this study, we conducted comparative analysis between C58 and 1D1609. These two strains belong to different genomospecies within the species complex and have distinct infectivity profiles. Genome comparisons revealed that each strain has >1,000 unique genes in addition to the 4,115 shared genes. Furthermore, the divergence in gene content and sequences vary among replicons. The circular chromosome is much more conserved compared to the linear chromosome. To identify the genes that may contribute to their differentiation in virulence, we compared the transcriptomes to screen for genes differentially expressed in response to the inducer acetosyringone. Based on the RNA-Seq results with three biological replicates, ∼100 differentially expressed genes were identified in each strain. Intriguingly, homologous genes with the same expression pattern account for <50% of these differentially expressed genes. This finding indicated that phenotypic variation may be partially explained by divergence in expression regulation. In summary, this study characterized the genomic and transcriptomic differences between two representative Agrobacterium strains. Moreover, the short list of differentially expressed genes are promising candidates for future characterization, which could improve our understanding of the genetic mechanisms for phenotypic divergence.

11.
Proc Natl Acad Sci U S A ; 116(8): 3300-3309, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30723146

ABSTRACT

The rice SUB1A-1 gene, which encodes a group VII ethylene response factor (ERFVII), plays a pivotal role in rice survival under flooding stress, as well as other abiotic stresses. In Arabidopsis, five ERFVII factors play roles in regulating hypoxic responses. A characteristic feature of Arabidopsis ERFVIIs is a destabilizing N terminus, which functions as an N-degron that targets them for degradation via the oxygen-dependent N-end rule pathway of proteolysis, but permits their stabilization during hypoxia for hypoxia-responsive signaling. Despite having the canonical N-degron sequence, SUB1A-1 is not under N-end rule regulation, suggesting a distinct hypoxia signaling pathway in rice during submergence. Herein we show that two other rice ERFVIIs gene, ERF66 and ERF67, are directly transcriptionally up-regulated by SUB1A-1 under submergence. In contrast to SUB1A-1, ERF66 and ERF67 are substrates of the N-end rule pathway that are stabilized under hypoxia and may be responsible for triggering a stronger transcriptional response to promote submergence survival. In support of this, overexpression of ERF66 or ERF67 leads to activation of anaerobic survival genes and enhanced submergence tolerance. Furthermore, by using structural and protein-interaction analyses, we show that the C terminus of SUB1A-1 prevents its degradation via the N-end rule and directly interacts with the SUB1A-1 N terminus, which may explain the enhanced stability of SUB1A-1 despite bearing an N-degron sequence. In summary, our results suggest that SUB1A-1, ERF66, and ERF67 form a regulatory cascade involving transcriptional and N-end rule control, which allows rice to distinguish flooding from other SUB1A-1-regulated stresses.


Subject(s)
Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , Oryza/genetics , Plant Proteins/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Adaptation, Physiological/genetics , Anaerobiosis/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Oryza/growth & development , Signal Transduction/genetics , Substrate Specificity
12.
Mitochondrial DNA B Resour ; 4(2): 2992-2993, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-33365825

ABSTRACT

The entire chloroplast genome of Aquilaria sinensis (Lour.) Gilg was identified as a circular molecule of 174,885 bp length with a typical tetrad structure, including a pair of inverted repeats (42,103 bp each), a large single copy (87,331 bp) and a small single copy (3,348 bp) regions. The A. sinensis cp genome encoded 8 rRNAs, 39 tRNAs, and 90 proteins. A phylogenetic tree was reconstructed using the 43 protein-coding genes of eight Thymelaeaceae. Two other Malvales, Abelmoschus esculentus and Durio zibethinus, were selected as the outgroup. Our phylogenetic analysis suggests that the five examined species of Aquilaria appeared a monophyletic group with robust support.

13.
Mol Plant Pathol ; 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29498790

ABSTRACT

Agrobacterium tumefaciens is the causal agent of crown gall disease in a wide range of plants via a unique interkingdom DNA transfer from bacterial cells into the plant genome. Agrobacterium tumefaciens is capable of transferring its T-DNA into different plant parts at different developmental stages for transient and stable transformation. However, the plant genes and mechanisms involved in these transformation processes are not well understood. We used Arabidopsis thaliana Col-0 seedlings to reveal the gene expression profiles at early time points during Agrobacterium infection. Common and differentially expressed genes were found in shoots and roots. A gene ontology analysis showed that the glucosinolate (GS) biosynthesis pathway was an enriched common response. Strikingly, several genes involved in indole glucosinolate (iGS) modification and the camalexin biosynthesis pathway were up-regulated, whereas genes in aliphatic glucosinolate (aGS) biosynthesis were generally down-regulated, on Agrobacterium infection. Thus, we evaluated the impacts of GSs and camalexin during different stages of Agrobacterium-mediated transformation combining Arabidopsis mutant studies, metabolite profiling and exogenous applications of various GS hydrolysis products or camalexin. The results suggest that the iGS hydrolysis pathway plays an inhibitory role on transformation efficiency in Arabidopsis seedlings at the early infection stage. Later in the Agrobacterium infection process, the accumulation of camalexin is a key factor inhibiting tumour development on Arabidopsis inflorescence stalks. In conclusion, this study reveals the differential roles of GSs and camalexin at different stages of Agrobacterium-mediated transformation and provides new insights into crown gall disease control and improvement of plant transformation.

14.
Plant Cell ; 28(10): 2398-2416, 2016 10.
Article in English | MEDLINE | ID: mdl-27742800

ABSTRACT

High-throughput approaches for profiling the 5' ends of RNA degradation intermediates on a genome-wide scale are frequently applied to analyze and validate cleavage sites guided by microRNAs (miRNAs). However, the complexity of the RNA degradome other than miRNA targets is currently largely uncharacterized, and this limits the application of RNA degradome studies. We conducted a global analysis of 5'-truncated mRNA ends that mapped to coding sequences (CDSs) of Arabidopsis thaliana, rice (Oryza sativa), and soybean (Glycine max). Based on this analysis, we provide multiple lines of evidence to show that the plant RNA degradome contains in vivo ribosome-protected mRNA fragments. We observed a 3-nucleotide periodicity in the position of free 5' RNA ends and a bias toward the translational frame. By examining conserved peptide upstream open reading frames (uORFs) of Arabidopsis and rice, we found a predominance of 5' termini of RNA degradation intermediates that were separated by a length equal to a ribosome-protected mRNA fragment. Through the analysis of RNA degradome data, we discovered uORFs and CDS regions potentially associated with stacked ribosomes in Arabidopsis. Furthermore, our analysis of RNA degradome data suggested that the binding of Arabidopsis ARGONAUTE7 to a noncleavable target site of miR390 might directly hinder ribosome movement. This work demonstrates an alternative use of RNA degradome data in the study of ribosome stalling.


Subject(s)
Oryza/genetics , Oryza/metabolism , RNA, Plant/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , MicroRNAs/genetics , Open Reading Frames/genetics , Ribosomes/genetics , Ribosomes/metabolism , Sequence Analysis, RNA/methods , Glycine max/genetics , Glycine max/metabolism
15.
Biosens Bioelectron ; 75: 285-92, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26322591

ABSTRACT

In this study, different morphological ZnO nanostructures, those of sharp nanowires (NWs), rod NWs, and hexahedral-puncheon nanostructures, were grown in microfluidic channels on the same glass substrate. Characterizations of correspondent biomolecule binding properties were simulated and demonstrated. The surface was modified using 3-ammineopropyl-triethoxysilane (3-APTES) and biotin-N-hydroxysuccinimide ester (NHS-biotin). Different concentrations (4.17pM to 41.7nM) of dye-conjugated streptavidin were simultaneously infused through the second microfluidic channels, which lie 90° from the first microfluidic channels. The florescent intensity at the crossover areas showed good agreement with simulations, with sharp ZnO NWs exhibiting the largest dynamic range and the highest fluorescent intensity. We further characterize correspondent protein detection using sharp ZnO NWs. The surfaces of these ZnO NWs were modified with mouse immunoglobulin G (IgG), infused through the second microfluidic channels with dye-conjugated (Alexa 546) anti-mouse IgG in different concentrations. Concentrations ranging from 417fM to 41.7nM can be resolved using sharp ZnO NWs. Finally, multiple protein detection was demonstrated using a five-by-eight microfluidic channel array. Fluorescence images present clear multiple detections at the crossover areas when using the sharp ZnO NWs for simultaneous dye-conjugated anti-mouse IgG and dye-conjugated anti-rabbit IgG (Alexa 647) detection.


Subject(s)
Biosensing Techniques , Immunoglobulin G/isolation & purification , Lab-On-A-Chip Devices , Nanowires/chemistry , Animals , Biotin/chemistry , Fluorescence , Mice , Nanostructures , Rabbits , Zinc Oxide/chemistry
16.
Plant Cell Environ ; 37(10): 2391-405, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24506560

ABSTRACT

Ethylene is known to play an essential role in mediating hypoxic responses in plants. Here, we show that in addition to regulating hypoxic responses, ethylene also regulates cellular responses in the reoxygenation stage after anoxic treatment in Arabidopsis. We found that expression of several ethylene biosynthetic genes and ethylene-responsive factors, including ERF1 and ERF2, was induced during reoxygenation. Compared with the wild type, two ethylene-insensitive mutants (ein2-5 and ein3eil1) were more sensitive to reoxygenation and displayed damaged phenotypes during reoxygenation. To characterize the role of ethylene, we applied microarray analysis to Col-0, ein2-5 and ein3eil1 under reoxygenation conditions. Our results showed that gene transcripts involved in reactive oxygen species (ROS) detoxification, dehydration response and metabolic processes were regulated during reoxygenation. Moreover, ethylene signalling may participate in regulating these responses and maintaining the homeostasis of different phytohormones. Our work presents evidence that ethylene has distinct functions in recovery after anoxia and provides insight into the reoxygenation signalling network.


Subject(s)
Arabidopsis/physiology , DNA-Binding Proteins/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant , Oxygen/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Arabidopsis/genetics , Citric Acid Cycle , Cyclopentanes/metabolism , DNA-Binding Proteins/genetics , Gene Expression Profiling , Homeostasis , Models, Biological , Mutation , Oligonucleotide Array Sequence Analysis , Oxidative Stress , Oxylipins/metabolism , Phenotype , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Seedlings/genetics , Seedlings/physiology , Signal Transduction , Stress, Physiological , Transcriptome , Water/physiology
17.
Plant Cell ; 25(7): 2699-713, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23897923

ABSTRACT

Transcriptional control plays an important role in regulating submergence responses in plants. Although numerous genes are highly induced during hypoxia, their individual roles in hypoxic responses are still poorly understood. Here, we found that expression of genes that encode members of the WRKY transcription factor family was rapidly and strongly induced upon submergence in Arabidopsis thaliana, and this induction correlated with induction of a large portion of innate immunity marker genes. Furthermore, prior submergence treatment conferred higher resistance to the bacterial pathogen Pseudomonas syringae in Arabidopsis. Among the WRKY genes tested, WRKY22 had the highest level of induction during the early stages of submergence. Compared with the wild type, WRKY22 T-DNA insertion mutants wrky22-1 and wrky22-2 had lower disease resistance and lower induction of innate immunity markers, such as FLG22-INDUCED RECEPTOR-LIKE KINASE1 (FRK1) and WRKY53, after submergence. Furthermore, transcriptomic analyses of wrky22-2 and chromatin immunoprecipitation identified several potential targets of WRKY22, which included genes encoding a TIR domain-containing protein, a plant peptide hormone, and many OLIGO PEPTIDE TRANSPORTER genes, all of which may lead to induction of innate immunity. In conclusion, we propose that submergence triggers innate immunity in Arabidopsis via WRKY22, a response that may protect against a higher probability of pathogen infection either during or after flooding.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Plant Diseases/genetics , Transcription Factors/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Blotting, Western , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Gene Regulatory Networks , Host-Pathogen Interactions , Immersion , Models, Genetic , Mutagenesis, Insertional , Oxygen/metabolism , Plant Diseases/microbiology , Plants, Genetically Modified , Protein Kinases/genetics , Protein Kinases/metabolism , Pseudomonas syringae/physiology , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/metabolism , Transcriptome
18.
PLoS One ; 6(12): e28888, 2011.
Article in English | MEDLINE | ID: mdl-22194941

ABSTRACT

We have adopted a hypoxic treatment system in which only roots were under hypoxic conditions. Through analyzing global transcriptional changes in both shoots and roots, we found that systemic signals may be transduced from roots to trigger responses in tissues not directly subjected to hypoxia. The molecular mechanisms of such systemic responses under flooding are currently largely unknown. Using ontological categorization for regulated genes, a systemic managing program of carbohydrate metabolism was observed, providing an example of how systemic responses might facilitate the survival of plants under flooding. Moreover, a proportion of gene expressions that regulated in shoots by flooding was affected in an ethylene signaling mutation, ein2-5. Many systemic-responsive genes involved in the systemic carbohydrate managing program, hormone responses and metabolism, ubiquitin-dependent protein degradation were also affected in ein2-5. These results suggested an important role of ethylene in mediation of hypoxic systemic responses. Genes associated with abscisic acid (ABA) biosynthesis are upregulated in shoots and down regulated in roots. An ABA signaling mutation, abi4-1, affects expression of several systemic responsive genes. These results suggested that regulation of ABA biosynthesis could be required for systemic responses. The implications of these results for the systemic responses of root-flooded Arabidopsis are discussed.


Subject(s)
Arabidopsis/cytology , Arabidopsis/genetics , Gene Expression Regulation, Plant , Transcription, Genetic , Abscisic Acid/metabolism , Carbohydrate Metabolism/genetics , Cell Hypoxia/genetics , Down-Regulation/genetics , Ethylenes/metabolism , Gene Expression Profiling , Genes, Plant/genetics , Models, Biological , Organ Specificity/genetics , Plant Roots/genetics , Plant Shoots/genetics , Signal Transduction/genetics , Transcription Factors/metabolism , Up-Regulation/genetics
19.
BMC Plant Biol ; 11: 60, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21473751

ABSTRACT

BACKGROUND: Orchids comprise one of the largest families of flowering plants and generate commercially important flowers. However, model plants, such as Arabidopsis thaliana do not contain all plant genes, and agronomic and horticulturally important genera and species must be individually studied. RESULTS: Several molecular biology tools were used to isolate flower-specific gene promoters from Oncidium 'Gower Ramsey' (Onc. GR). A cDNA library of reproductive tissues was used to construct a microarray in order to compare gene expression in flowers and leaves. Five genes were highly expressed in flower tissues, and the subcellular locations of the corresponding proteins were identified using lip transient transformation with fluorescent protein-fusion constructs. BAC clones of the 5 genes, together with 7 previously published flower- and reproductive growth-specific genes in Onc. GR, were identified for cloning of their promoter regions. Interestingly, 3 of the 5 novel flower-abundant genes were putative trypsin inhibitor (TI) genes (OnTI1, OnTI2 and OnTI3), which were tandemly duplicated in the same BAC clone. Their promoters were identified using transient GUS reporter gene transformation and stable A. thaliana transformation analyses. CONCLUSIONS: By combining cDNA microarray, BAC library, and bombardment assay techniques, we successfully identified flower-directed orchid genes and promoters.


Subject(s)
Gene Expression Regulation, Plant , Molecular Biology/methods , Orchidaceae/genetics , Promoter Regions, Genetic , Amino Acid Sequence , Cloning, Molecular , Flowers/chemistry , Flowers/genetics , Flowers/growth & development , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Orchidaceae/chemistry , Orchidaceae/growth & development , Sequence Alignment
20.
FEMS Microbiol Lett ; 280(2): 150-9, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18218021

ABSTRACT

cDNAs specifically expressed at the basidiome stage were isolated by using PCR-selected cDNA subtraction in order to study gene regulation during porous-hymenium basidiomatal formation in Antrodia cinnamomea. blastx results suggested that most of the expressed sequence tags (52.4-69.5%) had no significant protein homology to genes from other published living things. cDNAs particularly expressed at different growing conditions were identified using cDNA microarray analysis. Reverse transcriptase PCR analyses confirmed that the clone putative to P-type ATPase, various cytochrome P450s and some unknown genes were abundant at natural basidiomes while endoglucanase was abundant at the tissue from artificial medium.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Oligonucleotide Array Sequence Analysis/methods , Polyporales/physiology , Reverse Transcriptase Polymerase Chain Reaction/methods , Genes, Fungal/physiology , Polyporales/genetics , Polyporales/growth & development , RNA, Messenger/metabolism , Sequence Analysis, DNA , Subtraction Technique , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...