Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836703

ABSTRACT

Cobalt substitution for manganese sites in Na0.44MnO2 initiates a dynamic structural evolution process, yielding a composite cathode material comprising intergrown P2 and P3 phases. The novel P2/P3 composite cathode exhibits a reversible phase transition process during Na+ extraction/insertion, showcasing its attractive battery performance in sodium-ion batteries.

2.
Chem Sci ; 15(22): 8478-8487, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38846387

ABSTRACT

Hard carbon (HC) is one of the most promising anode materials for sodium-ion batteries (SIBs) due to its cost-effectiveness and low-voltage plateau capacity. Heteroatom doping is considered as an effective strategy to improve the sodium storage capacity of HC. However, most of the previous heteroatom doping strategies are performed at a relatively low temperature, which could not be utilized to raise the low-voltage plateau capacity. Moreover, extra doping of heteroatoms could create new defects, leading to a low initial coulombic efficiency (ICE). Herein, we propose a repair strategy based on doping a trace amount of P to achieve a high capacity along with a high ICE. By employing the cross-linked interaction between glucose and phytic acid to achieve the in situ P doped spherical hard carbon, the obtained PHC-0.2 possesses a large interlayer space that facilitates Na+ storage and transportation. In addition, doping a suitable amount of P could repair some defects in carbon layers. When used as an anode material for SIBs, the PHC-0.2 exhibits an enhanced reversible capacity of 343 mA h g-1 at 20 mA g-1 with a high ICE of 92%. Full cells consisting of a PHC-0.2 anode and a Na2Fe0.5Mn0.5[Fe(CN)6] cathode exhibited an average potential of 3.1 V with an initial discharge capacity of 255 mA h g-1 and an ICE of 85%. The full cell displays excellent cycling stability with a capacity retention of 80.3% after 170 cycles. This method is simple and low-cost, which can be extended to other energy storage materials.

3.
Angew Chem Int Ed Engl ; : e202402946, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696279

ABSTRACT

Electrolytes with anion-dominated solvation are promising candidates to achieve dendrite-free and high-voltage potassium metal batteries. However, it's challenging to form anion-reinforced solvates at low salt concentrations. Herein, we construct an anion-reinforced solvation structure at a moderate concentration of 1.5 M with weakly coordinated cosolvent ethylene glycol dibutyl ether. The unique solvation structure accelerates the desolvation of K+, strengthens the oxidative stability to 4.94 V and facilitates the formation of inorganic-rich and stable electrode-electrolyte interface. These enable stable plating/stripping of K metal anode over 2200 h, high capacity retention of 83.0% after 150 cycles with a high cut-off voltage of 4.5 V in K0.67MnO2//K cells, and even 91.5% after 30 cycles under 4.7 V. This work provides insight into weakly coordinated cosolvent and opens new avenues for designing ether-based high-voltage electrolytes.

4.
ACS Nano ; 18(20): 12945-12956, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717846

ABSTRACT

P3-layered transition oxide cathodes have garnered considerable attention owing to their high initial capacity, rapid Na+ kinetics, and less energy consumption during the synthesis process. Despite these merits, their practical application is hindered by the substantial capacity degradation resulting from unfavorable structural transformations, Mn dissolution and migration. In this study, we systematically investigated the failure mechanisms of P3 cathodes, encompassing Mn dissolution, migration, and the irreversible P3-O3' phase transition, culminating in severe structural collapse. To address these challenges, we proposed an interfacial spinel local interlocking strategy utilizing P3/spinel intergrowth oxide as a proof-of-concept material. As a result, P3/spinel intergrowth oxide cathodes demonstrated enhanced cycling performance. The effectiveness of suppressing Mn migration and maintaining local structure of interfacial spinel local interlocking strategy was validated through depth-etching X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and in situ synchrotron-based X-ray diffraction. This interfacial spinel local interlocking engineering strategy presents a promising avenue for the development of advanced cathode materials for sodium-ion batteries.

5.
Chem Sci ; 15(17): 6244-6268, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699270

ABSTRACT

Because of its abundant resources, low cost and high reversible specific capacity, hard carbon (HC) is considered as the most likely commercial anode material for sodium-ion batteries (SIBs). Therefore, reasonable design and effective strategies to regulate the structure of HCs play a crucial role in promoting the development of SIBs. Herein, the progress in the preparation approaches for HC anode materials is systematically overviewed, with a special focus on the comparison between traditional fabrication methods and advanced strategies emerged in recent years in terms of their influence on performance, including preparation efficiency, initial coulombic efficiency (ICE), specific capacity and rate capability. Furthermore, the advanced strategies are categorized into two groups: those exhibiting potential for large-scale production to replace traditional methods and those presenting guidelines for achieving high-performance HC anodes from top-level design. Finally, challenges and future development prospects to achieve high-performance HC anodes are also proposed. We believe that this review will provide beneficial guidance to actualize the truly rational design of advanced HC anodes, facilitating the industrialization of SIBs and assisting in formulating design rules for developing high-end advanced electrode materials for energy storage devices.

6.
Angew Chem Int Ed Engl ; : e202406889, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742478

ABSTRACT

Given the merits of abundant resource, low cost and high electrochemical activity, hard carbons have been regarded as one of the most commercializable anode material for sodium-ion batteries (SIBs). However, poor rate capability is one of the main obstacles that severely hinder its further development. In addition, the relationships between preparation method, material structure and electrochemical performance have not been clearly elaborated. Herein, a simple but effective strategy is proposed to accurately construct the multiple structural features in hard carbon via adjusting the components of precursors. Through detailed physical characterization of the hard carbons derived from different regulation steps, and further combined with in-situ Raman and galvanostatic intermittent titration technique (GITT) analysis, the network of multiple relationships between preparation method, microstructure, sodium storage behavior and electrochemical performance have been successfully established. Simultaneously, exceptional rate capability about 108.8 mAh g-1 at 8 A g-1 have been achieved from RHC sample with high reversible capacity and desirable initial Coulombic efficiency (ICE). Additionally, the practical applications can be extended to cylindrical battery with excellent cycle behaviors. Such facile approach can provide guidance for large-scale production of high-performance hard carbons and provides the possibility of building practical SIBs with high energy density and durability.

7.
Nano Lett ; 24(15): 4546-4553, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588452

ABSTRACT

Organic materials have attracted extensive attention for potassium-ion batteries due to their flexible structure designability and environmental friendliness. However, organic materials generally suffer from unavoidable dissolution in aprotic electrolytes, causing an unsatisfactory electrochemical performance. Herein, we designed a weakly solvating electrolyte to boost the potassium storage performance of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). The electrolyte induces an in situ morphology evolution and achieves a nanowire structure. The weakly dissolving capability of ethylene glycol diethyl ether-based electrolyte and unique nanowire structure effectively avoid the dissolution of PTCDA. As a result, PTCDA shows excellent cycling stability (a capacity retention of 89.1% after 2000 cycles) and good rate performance (70.3 mAh g-1 at 50C). In addition, experimental detail discloses that the sulfonyl group plays a key role in inducing morphology evolution during the charge/discharge process. This work opens up new opportunities in electrolyte design for organic electrodes and illuminates further developments of potassium-ion batteries.

8.
Proc Natl Acad Sci U S A ; 121(17): e2320777121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38630719

ABSTRACT

The hybrid electrolyzer coupled glycerol oxidation (GOR) with hydrogen evolution reaction (HER) is fascinating to simultaneously generate H2 and high value-added chemicals with low energy input, yet facing a challenge. Herein, Cu-based metal-organic frameworks (Cu-MOFs) are reported as model catalysts for both HER and GOR through doping of atomically dispersed precious and nonprecious metals. Remarkably, the HER activity of Ru-doped Cu-MOF outperformed a Pt/C catalyst, with its Faradaic efficiency for formate formation at 90% at a low potential of 1.40 V. Furthermore, the hybrid electrolyzer only needed 1.36 V to achieve 10 mA cm-2, 340 mV lower than that for splitting pure water. Theoretical calculations demonstrated that electronic interactions between the host and guest (doped) metals shifted downward the d-band centers (εd) of MOFs. This consequently lowered water adsorption and dissociation energy barriers and optimized hydrogen adsorption energy, leading to significantly enhanced HER activities. Meanwhile, the downshift of εd centers reduced energy barriers for rate-limiting step and the formation energy of OH*, synergistically enhancing the activity of MOFs for GOR. These findings offered an effective means for simultaneous productions of hydrogen fuel and high value-added chemicals using one hybrid electrolyzer with low energy input.

9.
Adv Mater ; : e2400169, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607696

ABSTRACT

Intrinsically safe sodium-ion batteries are considered as a promising candidate for large-scale energy storage systems. However, the high flammability of conventional electrolytes may pose serious safety threats and even explosions. Herein, a strategy of constructing a deep eutectic electrolyte is proposed to boost the safety and electrochemical performance of succinonitrile (SN)-based electrolyte. The strong hydrogen bond between S═O of 1,3,2-dioxathiolane-2,2-dioxide (DTD) and the α-H of SN endows the enhanced safety and compatibility of SN with Lewis bases. Meanwhile, the DTD participates in the inner Na+ sheath and weakens the coordination number of SN. The unique solvation configuration promotes the formation of robust gradient inorganic-rich electrode-electrolyte interphase, and merits stable cycling of half-cells in a wide temperature range, with a capacity retention of 82.8% after 800 cycles (25 °C) and 86.3% after 100 cycles (60 °C). Correspondingly, the full cells deliver tremendous improvement in cycling stability and rate performance.

10.
Chem Commun (Camb) ; 60(32): 4266-4274, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38572569

ABSTRACT

Sodium-ion batteries (SIBs), which have ample reserves and low production costs, are receiving more and more attention. As promising cathode candidates, layered transition metal oxides (LTMOs) have attracted intensive interest for their nontoxicity, high theoretical capacities, ease of manufacture, suitable voltage, abundant resources, and potential low cost. However, the commercial implementation of LTMOs is still hampered by their low rate capability, low energy density, insufficient cycling stability, and air instability. Therefore, this review comprehensively summarizes the research progress and modification strategies for LTMOs to enhance the stability of SIBs from microscopic heterostructure regulation to macroscale interface engineering modification. With the aim of realizing commercial applications of SIBs, more attention and research for improving the coulombic efficiency of LTMOS and close communication between academic and industrial organizations are also needed. It is expected that we will be able to provide unique perspectives for the design of powerful LTMOs in SIBs and guide the development of commercial application.

11.
ACS Nano ; 18(16): 10863-10873, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38613506

ABSTRACT

A Na4MnV(PO4)3 (NMVP) cathode is regarded as a promising cathode candidate for sodium-ion batteries (SIBs). However, issues such as low electronic conductivity and partial cation dissolution contribute to high polarization and structure distortion. Herein, we engineered the local electron density and reaction kinetic properties of NMVP cathodes with varying oxygen vacancies by introducing varying amounts of Zr doping and carbon coating. The optimized sample exhibited a high-rate capacity of 71.8 mAh g-1 at 30 C (83.1% capacity retention after 1000 cycles) and excellent performance over a wide temperature range (84.1 mAh g-1 at 60 °C and 61.4 mAh g-1 at -30 °C). In situ X-ray diffraction technology confirmed a redox solid solution and a two-phase reaction mechanism, revealing minor changes in cell volume and slight strain variations after Zr doping, effectively suppressing the structural distortion. Theoretical calculations illustrated that Zr doping largely shrinks the band gap of NMVP, enriches local electron density, and slightly alters the local element distribution and bond lengths. Moreover, full-cells have shown high energy density (259.9 Wh kg-1) and outstanding cycling stability (200 cycles). The work provides fresh insights into the synergistic effect of strain suppressing and interface engineering in promoting the development of wide temperature range and long-calendar-life SIBs.

12.
Chem Sci ; 15(13): 4833-4838, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38550702

ABSTRACT

Sodium metal batteries have attracted increasing interest recently, but suffer from severe dendrite growth caused by uneven Na plating/stripping behavior, which may result in the piercing of the membrane, with short circuiting and even cause explosions. Herein, a conductive and sodiophilic Ag coating layer is introduced to regulate Na deposition behaviors for highly reversible sodium metal batteries. Ag coated Zn foil with enhanced sodiophilicity, rapid Na+ transfer kinetics and superior electronic conductivity guarantee the homogenized Na+ ion and electric field distribution. This enables remarkably low overpotentials and uniform Na plating/stripping behavior with ultrahigh Coulombic efficiency of 99.9% during 500 cycles. As expected, the enhanced electrochemical performance of the anode-less battery and anode-free battery coupled with Prussian blue is achieved with the help of Ag coating. This work emphasizes the role of the conductive and sodiophilic coating layer in regulating the Na deposition behaviors for highly reversible sodium metal batteries.

13.
ACS Nano ; 18(13): 9354-9364, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38517038

ABSTRACT

Na3V2(PO4)3 (NVP) based on the multielectron reactions between V2+ and V5+ has been considered a promising cathode for sodium-ion batteries (SIBs). However, it still suffers from unsatisfactory stability, caused by the poor reversibility of the V5+/V4+ redox couple and structure evolution. Herein, we propos a strategy that combines high-entropy substitution and electrolyte optimization to boost the reversible multielectron reactions of NVP. The high reversibility of the V5+/V4+ redox couple and crystalline structure evolution are disclosed by in situ X-ray absorption near-edge structure spectra and in situ X-ray diffraction. Meanwhile, the electrochemical reaction kinetics of high-entropy substitution NVP (HE-NVP) can be further improved in the diglyme-based electrolyte. These enable HE-NVP to deliver a superior electrochemical performance (capacity retention of 93.1% after 2000 cycles; a large reversible capacity of 120 mAh g-1 even at 5.0 A g-1). Besides, the long cycle life and high power density of the HE-NVP∥natural graphite full-cell configuration demonstrated the superiority of HE-NVP cathode in SIBs. This work highlights that the synergism of high-entropy substitution and electrolyte optimization is a powerful strategy to enhance the sodium-storage performance of polyanionic cathodes for SIBs.

14.
Chem Soc Rev ; 53(8): 4230-4301, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38477330

ABSTRACT

Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.

15.
Adv Mater ; : e2402337, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38458611

ABSTRACT

Room-temperature sodium-sulfur (RT-Na/S) batteries are promising alternatives for next-generation energy storage systems with high energy density and high power density. However, some notorious issues are hampering the practical application of RT-Na/S batteries. Besides, the working mechanism of RT-Na/S batteries under practical conditions such as high sulfur loading, lean electrolyte, and low capacity ratio between the negative and positive electrode (N/P ratio), is of essential importance for practical applications, yet the significance of these parameters has long been disregarded. Herein, it is comprehensively reviewed recent advances on Na metal anode, S cathode, electrolyte, and separator engineering for RT-Na/S batteries. The discrepancies between laboratory research and practical conditions are elaborately discussed, endeavors toward practical applications are highlighted, and suggestions for the practical values of the crucial parameters are rationally proposed. Furthermore, an empirical equation to estimate the actual energy density of RT-Na/S pouch cells under practical conditions is rationally proposed for the first time, making it possible to evaluate the gravimetric energy density of the cells under practical conditions. This review aims to reemphasize the vital importance of the crucial parameters for RT-Na/S batteries to bridge the gaps between laboratory research and practical applications.

16.
Angew Chem Int Ed Engl ; 63(21): e202402342, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38491787

ABSTRACT

Zn deposition with a surface-preferred (002) crystal plane has attracted extensive attention due to its inhibited dendrite growth and side reactions. However, the nucleation and growth of the Zn(002) crystal plane are closely related to the interfacial properties. Herein, oriented growth of Zn(002) crystal plane is realized on Ag-modified surface that is directly visualized by in situ atomic force microscopy. A solid solution HCP-Zn (~1.10 at. % solubility of Ag, 30 °C) is formed on the Ag coated Zn foil (Zn@Ag) and possesses the same crystal structure as Zn to reduce its nucleation barrier caused by their lattice mismatch. It merits oriented Zn deposition and corrosion-resistant surface, and presents long cycling stability in symmetric cells and full cells coupled with V2O5 cathode. This work provides insights into interfacial regulation of Zn anodes for high-performance aqueous zinc metal batteries.

17.
Angew Chem Int Ed Engl ; 63(21): e202400406, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38491786

ABSTRACT

Diluents have been extensively employed to overcome the disadvantages of high viscosity and sluggish kinetics of high-concentration electrolytes, but generally do not change the pristine solvation structure. Herein, a weakly coordinating diluent, hexafluoroisopropyl methyl ether (HFME), is applied to regulate the coordination of Na+ with diglyme and anion and form a diluent-participated solvate. This unique solvation structure promotes the accelerated decomposition of anions and diluents, with the construction of robust inorganic-rich electrode-electrolyte interphases. In addition, the introduction of HFME reduces the desolvation energy of Na+, improves ionic conductivity, strengthens the antioxidant, and enhances the safety of the electrolyte. As a result, the assembled Na||Na symmetric cell achieves a stable cycle of over 1800 h. The cell of Na||P'2-Na0.67MnO2 delivers a high capacity retention of 87.3 % with a high average Coulombic efficiency of 99.7 % after 350 cycles. This work provides valuable insights into solvation chemistry for advanced electrolyte engineering.

18.
Chem Sci ; 15(11): 4135-4139, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38487247

ABSTRACT

Na2Fe2(SO4)3 (NFS), as a promising cathode for sodium-ion batteries, is still plagued by its poor intrinsic conductivity. In general, hybridization with carbon materials is an effective strategy to improve the sodium storage performance of NFS. However, the role of carbon materials in the electrochemical performance of NFS cathode materials has not been thoroughly investigated. Herein, the effect of carbon materials was revealed by employing various conductive carbon materials as carbon sources. Among these, the NFS coated with Ketjen Black (NFS@KB) shows the largest specific surface area, which is beneficial for electrolyte penetration and rapid ionic/electronic migration, leading to improved electrochemical performance. Therefore, NFS@KB shows a long cycle life (74.6 mA h g-1 after 1000 cycles), superior rate performance (61.5 mA h g-1 at a 5.0 A g-1), and good temperature tolerance (-10 °C to 60 °C). Besides, the practicality of the NFS@KB cathode was further demonstrated by assembling a NFS@KB//hard carbon full cell. Therefore, this research indicates that a suitable carbon material for the NFS cathode can greatly activate the sodium storage performance.

19.
Angew Chem Int Ed Engl ; 63(16): e202318822, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38372507

ABSTRACT

Nanoconfined polymer molecules exhibit profound transformations in their properties and behaviors. Here, we present the synthesis of a polymer-in-MOF single ion conducting solid polymer electrolyte, where polymer segments are partially confined within nanopores ZIF-8 particles through Lewis acid-base interactions for solid-state sodium-metal batteries (SSMBs). The unique nanoconfinement effectively weakens Na ion coordination with the anions, facilitating the Na ion dissociation from salt. Simultaneously, the well-defined nanopores within ZIF-8 particles provide oriented and ordered migration channels for Na migration. As a result, this pioneering design allows the solid polymer electrolyte to achieve a Na ion transference number of 0.87, Na ion conductivity of 4.01×10-4 S cm-1, and an extended electrochemical voltage window up to 4.89 V vs. Na/Na+. The assembled SSMBs (with Na3V2(PO4)3 as the cathode) exhibit dendrite-free Na-metal deposition, promising rate capability, and stable cycling performance with 96 % capacity retention over 300 cycles. This innovative polymer-in-MOF design offers a compelling strategy for advancing high-performance and safe solid-state metal battery technologies.

20.
Small ; : e2312211, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381004

ABSTRACT

Uveal melanoma (UM) is an ocular cancer predominantly affecting adults, characterized by challenging diagnostic outcomes. This research endeavors to develop an innovative multifunctional nanocomposite system sensitive to near-infrared (NIR) radiation, serving as both a non-oxygen free-radical generator and a photothermal agent. The designed system combines azobis isobutyl imidazoline hydrochloride (AIBI) with mesoporous copper sulfide (MCuS) nanoparticles. MCuS harnesses NIR laser energy to induce photothermal therapy, converting light energy into heat to destroy cancer cells. Simultaneously, AIBI is activated by the NIR laser to produce alkyl radicals, which induce DNA damage in remaining cancer cells. This distinctive feature equips the designed system to selectively eliminate cancers in the hypoxic tumor microenvironment. MCuS is also beneficial to scavenge the overexpressed glutathione (GSH) in the tumor microenvironment. GSH generally consumes free radicals and hiders the PDT effect. To enhance control over AIBI release in cancer cells, 1-tetradecyl alcohol (TD), a phase-changing material, is introduced onto the surface of MCuS nanoparticles to create the final AMPT nanoparticle system. In vitro and in vivo experiments confirm the remarkable anti-tumor efficacy of AMPT. Notably, the study introduces an orthotopic tumor model for UM, demonstrating the feasibility of precise and effective targeted treatment within the ocular system.

SELECTION OF CITATIONS
SEARCH DETAIL
...