Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38002372

ABSTRACT

Dental articulation holds crucial and fundamental importance in the design of dental restorations and analysis of prosthetic or orthodontic occlusions. However, common traditional and digital articulators are difficult and cumbersome in use to effectively translate the dental cast model to the articulator workspace when using traditional facebows. In this study, we have developed a personalized virtual dental articulator that directly utilizes computed tomography (CT) data to mathematically model the complex jaw movement, providing a more efficient and accurate way of analyzing and designing dental restorations. By utilizing CT data, Frankfurt's horizontal plane was established for the mathematical modeling of virtual articulation, eliminating tedious facebow transfers. After capturing the patients' CT images and tracking their jaw movements prior to dental treatment, the jaw-tracking information was incorporated into the articulation mathematical model. The validation and analysis of the personalized articulation approach were conducted by comparing the jaw movement between simulation data (virtual articulator) and real measurement data. As a result, the proposed virtual articulator achieves two important functions. Firstly, it replaces the traditional facebow transfer process by transferring the digital dental model to the virtual articulator through the anatomical relationship derived from the cranial CT data. Secondly, the jaw movement trajectory provided by optical tracking was incorporated into the mathematical articulation model to create a personalized virtual articulation with a small Fréchet distance of 1.7 mm. This virtual articulator provides a valuable tool that enables dentists to obtain diagnostic information about the temporomandibular joint (TMJ) and configure personalized settings of occlusal analysis for patients.

2.
Sci Adv ; 9(15): eadg2823, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37043576

ABSTRACT

Interface-specific hydrogen (H)-bonding network of water directly controls the energy transfer and chemical reaction pathway at many charged aqueous interfaces, yet to characterize these bonded water layer structures remains a challenge. We now develop a sum-frequency spectroscopic scheme with varying photon momenta as an all-optic solution for retrieving the vibrational spectra of the bonded water layer and the ion diffuse layer and, hence, microscopic structural and charging information about an interface. Application of the method to a model surfactant-water interface reveals a hidden weakly donor H-bonded water species, suggesting an asymmetric hydration-shell structure of fully solvated surfactant headgroups. In another application to a zwitterionic phosphatidylcholine lipid monolayer-water interface, we find a highly polarized bonded water layer structure associating to the phosphatidylcholine headgroup, while the diffuse layer contribution is experimentally proven to be negligible. Our all-optic method offers an in situ microscopic probe of electrochemical and biological interfaces and the route toward future imaging and ultrafast dynamics studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...