Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Sci ; 30(1): 77, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37691117

ABSTRACT

BACKGROUND: Bioactive materials have now raised considerable attention for the treatment of osteoarthritis (OA), such as knee OA, rheumatoid OA, and temporomandibular joint (TMJ) OA. TMJ-OA is a common disease associated with an imbalance of cartilage regeneration, tissue inflammation, and disability in mouth movement. Recently, biological materials or molecules have been developed for TMJ-OA therapy; however, ideal treatment is still lacking. In this study, we used the combination of a human platelet rich plasma with hyaluronic acid (hPRP/HA) for TMJ-OA therapy to perform a clinical trial in dish to humans. METHOD: Herein, hPRP was prepared, and the hPRP/HA combined concentration was optimized by MTT assay. For the clinical trial in dish, pro-inflammatory-induced in-vitro and in-vivo mimic 3D TMJ-OA models were created, and proliferation, gene expression, alcian blue staining, and IHC were used to evaluate chondrocyte regeneration. For the animal studies, complete Freund's adjuvant (CFA) was used to induce the TMJ-OA rat model, and condyle and disc regeneration were investigated through MRI. For the clinical trial in humans, 12 patients with TMJ-OA who had disc displacement and pain were enrolled. The disc displacement and pain at baseline and six months were measured by MRI, and clinical assessment, respectively. RESULTS: Combined hPRP/HA treatment ameliorated the proinflammatory-induced TMJ-OA model and promoted chondrocyte proliferation by activating SOX9, collagen type I/II, and aggrecan. TMJ-OA pathology-related inflammatory factors were efficiently downregulated with hPRP/HA treatment. Moreover, condylar cartilage was regenerated by hPRP/HA treatment in a proinflammatory-induced 3D neocartilage TMJ-OA-like model. During the animal studies, hPRP/HA treatment strongly repaired the condyle and disc in a CFA-induced TMJ-OA rat model. Furthermore, we performed a clinical trial in humans, and the MRI data demonstrated that after 6 months of treatment, hPRP/HA regenerated the condylar cartilage, reduced disc displacement, alleviated pain, and increased the maximum mouth opening (MMO). Overall, clinical trials in dish to human results revealed that hPRP/HA promoted cartilage regeneration, inhibited inflammation, reduced pain, and increased joint function in TMJ-OA. CONCLUSION: Conclusively, this study highlighted the therapeutic potential of the hPRP and HA combination for TMJ-OA therapy, with detailed evidence from bench to bedside. Trial registration Taipei Medical University Hospital (TMU-JIRB No. N201711041). Registered 24 November 2017. https://tmujcrc.tmu.edu.tw/inquiry_general.php .


Subject(s)
Hyaluronic Acid , Osteoarthritis, Knee , Humans , Animals , Rats , Hyaluronic Acid/pharmacology , Hyaluronic Acid/therapeutic use , Pain , Inflammation , Biocompatible Materials
2.
Aging (Albany NY) ; 13(3): 3605-3617, 2021 01 10.
Article in English | MEDLINE | ID: mdl-33461165

ABSTRACT

Bony injuries lead to compromised skeletal functional ability which further increase in aging population due to decreased bone mineral density. Therefore, we aimed to investigate the therapeutic potential of platelet-derived biomaterials (PDB) against bone injury. Specifically, we assessed the impact of PDB on osteo-inductive characteristics and migration of mouse embryonic fibroblasts (MEFs). Osteogenic lineage, matrix mineralization and cell migration were determined by gene markers (RUNX2, OPN and OCN), alizarin Red S staining, and migration markers (FAK, pFAK and Src) and EMT markers, respectively. The therapeutic impact of TGF-ß1, a key component of PDB, was confirmed by employing inhibitor of TGF-ß receptor I (Ti). Molecular imaging-based in vivo cellular migration in mice was determined by establishing bone injury at right femurs. Results showed that PDB markedly increased expression of osteogenic markers, matrix mineralization, migration and EMT markers, revealing higher osteogenic and migratory potential of PDB-treated MEFs. In vivo cell migration was manifested by expression of migratory factors, SDF-1 and CXCR4. Compared to control, PDB-treated mice exhibited higher bone density and volume. Ti treatment inhibited both migration and osteogenic potential of MEFs, affirming impact of TGF-ß1. Collectively, our study clearly indicated PDB-rescued bone injury through enhancing migratory potential of MEFs and osteogenesis.


Subject(s)
Biocompatible Materials , Blood Platelets/metabolism , Bone Regeneration , Cell Movement , Femur/injuries , Fibroblasts/metabolism , Osteogenesis , Transforming Growth Factor beta1/metabolism , Animals , Bone Density , Calcification, Physiologic , Cell Lineage , Chemokine CXCL12 , Core Binding Factor Alpha 1 Subunit/genetics , Epithelial-Mesenchymal Transition , Femur/metabolism , Femur/pathology , Fibroblasts/cytology , Focal Adhesion Kinase 1 , In Vitro Techniques , Mice , NIH 3T3 Cells , Osteocalcin/genetics , Osteopontin/genetics , Receptors, CXCR4 , Transforming Growth Factor beta1/antagonists & inhibitors , src-Family Kinases
3.
Cancers (Basel) ; 12(11)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142749

ABSTRACT

Traditional Chinese medicines Antler's extract (A) and Ganoderma lucidum (G) and Antrodia Camphorata (A) have been known to individually contain a plethora of bioactive factors including triterpenoids, polysaccharides etc., exerting various curative impacts such as anti-inflammatory, anti-oxidative, anti-atherosclerotic and anti-viral activities. However, their combinatorial therapeutic efficacy for oral cancer has not been investigated. Hence, we synthesized a robust cocktail called AGA and investigated its anti-oral cancer potential in vitro and in vivo. An MTT assay revealed the IC50 of AGA to be about 15 mg at 72 h. Therefore, 10 mg and 20 mg doses were selected to study the effect of AGA. The AGA significantly inhibited proliferation of oral cancer cells (HSC3, SAS, and OECM-1) in a dose- and time-dependent manner. AGA retarded cell cycle regulators (CDK4, CDK6, cyclin A, B1, D1 and E2) and apoptosis inhibitory protein Bcl-2, but enhanced pro-apoptotic protein Bax and a higher percentage of cells in Sub-G1 phase. Mechanistically, AGA suppressed all EMT markers; consequently, it decreased the migration ability of cancer cells. AGA significantly reduced xenograft tumor growth in nude mice with no adverse events in liver and renal toxicity. Conclusively, AGA strongly inhibited oral cancer through inducing apoptosis and inhibiting the migration and promotion of cell cycle arrest at subG1 phase, which may be mediated primarily via cocktail-contained triterpenoids and polysaccharides.

SELECTION OF CITATIONS
SEARCH DETAIL
...