Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Physiol Meas ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917841

ABSTRACT

OBJECTIVE: The cerebral vasculature is formed of an intricate network of blood vessels over many different length scales. Changes in their structure and connection are implicated in multiple cerebrovascular and neurological disorders. In this study, we present a novel approach to the quantitative analysis of the cerebral macrovasculature using computational and mathematical tools in a large dataset. Approach. We analysed a publicly available vessel dataset from a cohort of 56 (32/24 F/M) healthy subjects. This dataset includes digital reconstructions of human brain macrovasculatures. We then propose a new mathematical model to compute blood flow dynamics and pressure distributions within these 56-representative cerebral macrovasculatures and quantify the results across this cohort. Main results. Statistical analysis showed that the steady state level of cerebrovascular resistance (CVR) gradually increases with age in both men and women. These age-related changes in CVR are in good agreement with previously reported values. All subjects were found to have only small phase angles (< 6°) between blood pressure and blood flow at the cardiac frequency. Significance. These results showed that the dynamic component of blood flow adds very little phase shift at the cardiac frequency, which implies that the cerebral macrocirculation can be regarded as close to steady state in its behaviour, at least in healthy populations, irrespective of age or sex. This implies that the phase shift observed in measurements of blood flow in cerebral vessels is caused by behaviour further down the vascular bed. This behaviour is important for future statistical models of the dynamic maintenance of oxygen and nutrient supply to the brain.

2.
J Psychopharmacol ; 38(6): 515-525, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853592

ABSTRACT

BACKGROUND: A better understanding of the mechanisms underlying cognitive impairment in schizophrenia is imperative, as it causes poor functional outcomes and a lack of effective treatments. AIMS: This study aimed to investigate the relationships of two proposed main pathophysiology of schizophrenia, altered prefrontal-striatal connectivity and the dopamine system, with cognitive impairment and their interactions. METHODS: Thirty-three patients with schizophrenia and 27 healthy controls (HCs) who are right-handed and matched for age and sex were recruited. We evaluated their cognition, functional connectivity (FC) between the dorsolateral prefrontal cortex (DLPFC)/middle frontal gyrus (MiFG) and striatum, and the availability of striatal dopamine transporter (DAT) using a cognitive battery investigating attention, memory, and executive function, resting-state functional magnetic resonance imaging with group independent component analysis and single-photon emission computed tomography with 99mTc-TRODAT. RESULTS: Patients with schizophrenia exhibited poorer cognitive performance, reduced FC between DLPFC/MiFG and the caudate nucleus (CN) or putamen, decreased DAT availability in the left CN, and decreased right-left DAT asymmetry in the CN compared to HCs. In patients with schizophrenia, altered imaging markers are associated with cognitive impairments, especially the relationship between DLPFC/MiFG-putamen FC and attention and between DAT asymmetry in the CN and executive function. CONCLUSIONS: This study is the first to demonstrate how prefrontal-striatal hypoconnectivity and altered striatal DAT markers are associated with different domains of cognitive impairment in schizophrenia. More research is needed to evaluate their complex relationships and potential therapeutic implications.


Subject(s)
Cognitive Dysfunction , Corpus Striatum , Dopamine Plasma Membrane Transport Proteins , Magnetic Resonance Imaging , Schizophrenia , Tomography, Emission-Computed, Single-Photon , Humans , Male , Female , Schizophrenia/physiopathology , Schizophrenia/metabolism , Schizophrenia/diagnostic imaging , Adult , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Corpus Striatum/metabolism , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiopathology , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Dorsolateral Prefrontal Cortex/metabolism , Case-Control Studies , Middle Aged , Executive Function/physiology , Neuropsychological Tests , Young Adult
3.
J Chin Med Assoc ; 87(6): 627-634, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38656303

ABSTRACT

BACKGROUND: Current evidence of volume changes in hippocampal subdivisions in schizophrenia remains inconsistent, and few studies have investigated the relationship between regional hippocampal volumes and symptom remission. METHODS: In this cross-sectional study, we recruited 31 patients with schizophrenia and 31 healthy controls (HCs). Symptomatic remission in schizophrenia was determined according to Remission in Schizophrenia Working Group criteria. The volumes of hippocampal longitudinal subregions and transverse subfields were measured using manual and automatic techniques, respectively. Between-group regional hippocampal volume differences were analyzed using multivariate analysis of covariance followed by univariate analysis of covariance. RESULTS: Compared with the HCs, the patients with schizophrenia had smaller bilateral heads and tails along the longitudinal axis; they also had reduced volumes of the bilateral CA1, CA3, CA4, GC-ML-DG, molecular layer, tail, left subiculum, left HATA, and right parasubiculum along the transverse axis in the hippocampus (all corrected p < 0.05). Furthermore, compared with the HCs and patients with remitted schizophrenia, the patients with nonremitted schizophrenia had smaller bilateral hippocampal tail subfields (corrected p < 0.05). CONCLUSION: Our results indicated that the pathophysiology and symptomatic remission of schizophrenia are related to changes in the volumes of hippocampal subdivisions. These volume changes might be clinically relevant as biomarkers for schizophrenia identification and treatment.


Subject(s)
Hippocampus , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Hippocampus/pathology , Hippocampus/diagnostic imaging , Adult , Male , Female , Cross-Sectional Studies , Middle Aged , Magnetic Resonance Imaging
4.
Curr Drug Deliv ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38204256

ABSTRACT

BACKGROUND: Gefitinib (GFN) is an Epithelial Growth Factor Receptor (EGFR) inhibitor, and Food and Drug Administration (FDA) has approved medication to treat lung cancer. However, this investigation aimed to produce and characterize Gefitinib (GFN)-loaded chitosan and soy lecithin nanoparticles (NPs) modified with D-α-tocopheryl polyethylene glycol 1000 succinate mono ester (TPGS) and assess their therapeutic potential against HepG2 liver cell lines. METHODS: Chitosan, a cationic polymer with biocompatible and biodegradable properties, was combined with soy lecithin to develop the NPs loaded with GFN using a self-organizing ionic interaction methodology. RESULTS: The entrapment efficiency and drug loading were found to be 59.04±4.63 to 87.37±3.82% and 33.46±3.76 to 49.50±4.35%, respectively, and results indicated the encapsulation of GEN in NPs. The pH of the formulations was observed between 4.48-4.62. Additionally, all the prepared NPs showed the size and PDI range of 89.2±15.9 nm to 799.2±35.8 nm and 0.179±0.065 to 0.455±0.097, respectively. The FTIR bands in optimized formulation (GFN-NP1) indicated that the drug might be contained within the NP's core. The SEM photograph revealed the spherical shape of NPs. The kinetic release model demonstrated the combination of diffusion and erosion mechanisms. The IC50 value of GFN and GFN-NP1 formulation against the HepG2 cell lines were determined and found to be 63.22±3.36 µg/ml and 45.80±2.53 µg/ml, respectively. DAPI and PI staining agents were used to detect nuclear morphology. CONCLUSION: It was observed that the optimized GFN-NP1 formulation successfully internalized and inhibited the growth of HepG2 cells. Hence, it can be concluded that the prepared NPs can be a new therapeutic option for treating liver cancer.

5.
Brain Sci ; 13(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38002542

ABSTRACT

(1) Background: The hippocampus (HP) and amygdala are essential structures in obsessive-compulsive behavior (OCB); however, the specific role of the HP in patients with behavioral variant frontotemporal dementia (bvFTD) and OCB remains unclear. (2) Objective: We investigated the alterations of hippocampal and amygdalar volumes in patients with bvFTD and OCB and assessed the correlations of clinical severity with hippocampal subfield and amygdalar nuclei volumes in bvFTD patients with OCB. (3) Materials and methods: Eight bvFTD patients with OCB were recruited and compared with eight age- and sex-matched healthy controls (HCs). Hippocampal subfield and amygdalar nuclei volumes were analyzed automatically using a 3T magnetic resonance image and FreeSurfer v7.1.1. All participants completed the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), Neuropsychiatric Inventory (NPI), and Frontal Behavioral Inventory (FBI). (4) Results: We observed remarkable reductions in bilateral total hippocampal volumes. Compared with the HCs, reductions in the left hippocampal subfield volume over the cornu ammonis (CA)1 body, CA2/3 body, CA4 body, granule cell layer, and molecular layer of the dentate gyrus (GC-ML-DG) body, molecular layer of the HP body, and hippocampal tail were more obvious in patients with bvFTD and OCB. Right subfield volumes over the CA1 body and molecular layer of the HP body were more significantly reduced in bvFTD patients with OCB than in those in HCs. We observed no significant difference in amygdalar nuclei volume between the groups. Among patients with bvFTD and OCB, Y-BOCS score was negatively correlated with left CA2/3 body volume (τb = -0.729, p < 0.001); total NPI score was negatively correlated with left GC-ML-DG body (τb = -0.648, p = 0.001) and total bilateral hippocampal volumes (left, τb = -0.629, p = 0.002; right, τb = -0.455, p = 0.023); and FBI score was negatively correlated with the left molecular layer of the HP body (τb = -0.668, p = 0.001), CA4 body (τb = -0.610, p = 0.002), and hippocampal tail volumes (τb = -0.552, p < 0.006). Mediation analysis confirmed these subfield volumes as direct biomarkers for clinical severity, independent of medial and lateral orbitofrontal volumes. (5) Conclusions: Alterations in hippocampal subfield volumes appear to be crucial in the pathophysiology of OCB development in patients with bvFTD.

6.
J Biol Chem ; 299(11): 105335, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37827291

ABSTRACT

Hepatoma-derived growth factor (HDGF) overexpression and uncontrolled reactive oxygen species (ROS) accumulation are involved in malignant transformation and poor prognosis in various types of cancer. However, the interplay between HDGF and ROS generation has not been elucidated in hepatocellular carcinoma. Here, we first analyzed the profile of HDGF expression and ROS production in newly generated orthotopic hepatomas by ultrasound-guided implantation. In situ superoxide detection showed that HDGF-overexpressing hepatomas had significantly elevated ROS levels compared with adjacent nontumor tissues. Consistently, liver tissues from HDGF-deficient mice exhibited lower ROS fluorescence than those from age- and sex-matched WT mice. ROS-detecting fluorescent dyes and flow cytometry revealed that recombinant HDGF (rHDGF) stimulated the production of superoxide anion, hydrogen peroxide, and mitochondrial ROS generation in cultured hepatoma cells in a dose-dependent manner. In contrast, the inactive Ser103Ala rHDGF mutant failed to promote ROS generation or oncogenic behaviors. Seahorse metabolic flux assays revealed that rHDGF dose dependently upregulated bioenergetics through enhanced basal and total oxygen consumption rate, extracellular acidification rate, and oxidative phosphorylation in hepatoma cells. Moreover, antioxidants of N-acetyl cysteine and MitoQ treatment significantly inhibited HDGF-mediated cell proliferation and invasive capacity. Genetic silencing of superoxide dismutase 2 augmented the HDGF-induced ROS generation and oncogenic behaviors of hepatoma cells. Finally, genetic knockdown nucleolin (NCL) and antibody neutralization of surface NCL, the HDGF receptor, abolished the HDGF-induced increase in ROS and mitochondrial energetics. In conclusion, this study has demonstrated for the first time that the HDGF/NCL signaling axis induces ROS generation by elevating ROS generation in mitochondria, thereby stimulating liver carcinogenesis.


Subject(s)
Carcinoma, Hepatocellular , Animals , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Reactive Oxygen Species , Carcinogenesis/genetics
7.
Prog Brain Res ; 278: 79-116, 2023.
Article in English | MEDLINE | ID: mdl-37414495

ABSTRACT

Approximately 40% of patients with major depressive disorder (MDD) had limited response to conventional antidepressant treatments, resulting in treatment-resistant depression (TRD), a debilitating subtype that yielded a significant disease burden worldwide. Molecular imaging techniques, such as positron emission tomography (PET) and single photon emission tomography (SPECT), can measure targeted macromolecules or biological processes in vivo. These imaging tools provide a unique possibility to explore the pathophysiology and treatment mechanisms underlying TRD. This work reviewed and summarized prior PET and SPECT studies to examine the neurobiology and treatment-induced changes of TRD. A total of 51 articles were included with supplementary information from studies for MDD and healthy controls (HC). We found that there were altered regional blood flow or metabolic activity in several brain regions, such as the anterior cingulate cortex, prefrontal cortex, insula, hippocampus, amygdala, parahippocampus, and striatum. These regions have been suggested to engage in the pathophysiology or treatment resistance of depression. There was also limited data to demonstrate the changes in the markers of serotonin, dopamine, amyloid, and microglia over some regions in TRD. Moreover, several observed abnormal imaging indices were linked to treatment outcomes, supporting their specificity and clinical relevance. To address the limitations of the included studies, we proposed that future studies needed longitudinal designs, multimodal approaches, and radioligands targeting specific neural substrates for TRD to evaluate their baseline and treatment-related alterations in TRD. Adequate data sharing and reproducible data analysis can facilitate advances in this field.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Depressive Disorder, Treatment-Resistant/diagnostic imaging , Depressive Disorder, Treatment-Resistant/drug therapy , Brain/metabolism , Prefrontal Cortex , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
8.
BMJ Open ; 13(6): e070490, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286314

ABSTRACT

OBJECTIVE: Hepatitis C is an important risk factor for cirrhosis and liver cancer in the Taiwanese population. Domestic prisons reported a higher rate of hepatitis C infection than the national average. Efficient and effective treatment of patients with hepatitis C in prisons is required to decrease the number of infections. This study analysed the effectiveness of hepatitis C treatment and its side effects in prison patients. DESIGN: This retrospective analysis included adult patients with hepatitis C who received direct-acting antiviral agents between 2018 and 2021. SETTING: The special hepatitis C clinics in the two prisons were run by a medium-sized hepatitis C treatment hospital in Southern Taiwan. Three direct-acting antiviral agents, sofosbuvir/ledipasvir for 12 weeks, glecaprevir/pibrentasvir for 8 or 12 weeks and sofosbuvir/velpatasvir for 12 weeks, were adopted based on patient characteristics. PARTICIPANTS: 470 patients were included. OUTCOME MEASURE: The sustained virological response at 12 weeks after the end of treatment was compared between the different groups. RESULTS: Most of the patients were men (70.0%) with a median age of 44 years. The most prevalent hepatitis C virus genotype was genotype 1 (44.26%). A total of 240 patients (51.06%) had a history of injectable drug use; 44 (9.36%) and 71 (15.11%) patients were coinfected with hepatitis B virus and HIV, respectively. Only 51 patients (10.85%) had liver cirrhosis. Most patients (98.30%) had normal renal function or no history of kidney disease. The patients had a sustained virological response achievement rate of 99.2%. The average incidence of adverse reactions during treatment was approximately 10%. Many of the adverse reactions were mild and resolved spontaneously. CONCLUSION: Direct-acting antiviral agents are effective for treating hepatitis C in Taiwanese prisoners. These therapeutics were well-tolerated by the patient population.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Hepatitis C, Chronic , Hepatitis C , Adult , Male , Humans , Female , Sofosbuvir/adverse effects , Antiviral Agents/adverse effects , Prisons , Hepacivirus/genetics , Hepatitis C, Chronic/drug therapy , Retrospective Studies , Taiwan/epidemiology , Drug Therapy, Combination , Hepatitis C/drug therapy , Treatment Outcome , Liver Cirrhosis/drug therapy , Genotype
9.
Med Sci Monit ; 29: e939949, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37183387

ABSTRACT

BACKGROUND Self-injection locking (SIL) radar uses continuous-wave radar and an injection-locked oscillator-based frequency discriminator that receives and demodulates radar signals remotely to monitor vital signs. This study aimed to compare SIL radar with traditional electrocardiogram (ECG) measurements to monitor respiratory rate (RR) and heartbeat rate (HR) during the COVID-19 pandemic at a single hospital in Taiwan. MATERIAL AND METHODS We recruited 31 hospital staff members (16 males and 15 females) for respiratory rates (RR) and heartbeat rates (HR) detection. Data acquisition with the SIL radar and traditional ECG was performed simultaneously, and the accuracy of the measurements was evaluated using Bland-Altman analysis. RESULTS To analyze the results, participates were divided into 2 groups (individual subject and multiple subjects) by gender (male and female), or 4 groups (underweight, normal weight, overweight, and obesity) by body mass index (BMI). The results were analyzed using mean bias errors (MBE) and limits of agreement (LOA) with a 95% confidence interval. Bland-Altman plots were utilized to illustrate the difference between the SIL radar and ECG monitor. In all BMI groups, results of RR were more accurate than HR, with a smaller MBE. Furthermore, RR and HR measurements of the male groups were more accurate than those of the female groups. CONCLUSIONS We demonstrated that non-contact SIL radar could be used to accurately measure HR and RR for hospital healthcare during the COVID-19 pandemic.


Subject(s)
COVID-19 , Signal Processing, Computer-Assisted , Male , Humans , Female , Radar , Taiwan/epidemiology , Pandemics , Vital Signs , Heart Rate , Respiratory Rate , Hospitals , Algorithms , Monitoring, Physiologic/methods
10.
Gene ; 865: 147331, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36871674

ABSTRACT

Slow skeletal muscle troponin T (TNNT1) as a poor prognostic indicator is upregulated in colon and breast cancers. However, the role of TNNT1 in the disease prognosis and biological functions of hepatocellular carcinoma (HCC) is still unclear. The Cancer Genome Atlas (TCGA), real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to evaluate the TNNT1 expression of human HCC. The impact of TNNT1 levels on disease progression and survival outcome was studied using TCGA analysis. Moreover, the bioinformatics analysis and HCC cell culture were used to investigate the biological functions of TNNT1. Besides, the immunoblot analysis and enzyme-linked immunosorbent assay (ELISA) were used to detect the extracellular TNNT1 of HCC cells and circulating TNNT1 of HCC patients, respectively. The effect of TNNT1 neutralization on oncogenic behaviors and signaling was further validated in the cultured hepatoma cells. In this study, tumoral and blood TNNT1 was upregulated in HCC patients based on the analyses using bioinformatics, fresh tissues, paraffin sections, and serum. From the multiple bioinformatics tools, the TNNT1 overexpression was associated with advanced stage, high grade, metastasis, vascular invasion, recurrence, and poor survival outcome in HCC patients. By the cell culture and TCGA analyses, TNNT1 expression and release were positively correlated with epithelial-mesenchymal transition (EMT) processes in HCC tissues and cells. Moreover, TNNT1 neutralization suppressed oncogenic behaviors and EMT in hepatoma cells. In conclusion, TNNT1 may serve as a non-invasive biomarker and drug target for HCC management. This research finding may provide a new insight for HCC diagnosis and treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Muscle, Skeletal/metabolism , Prognosis , Troponin T/genetics
11.
Environ Pollut ; 327: 121476, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36997141

ABSTRACT

Plasticizers are considered as environmental pollution released from medical devices and increased potential oncogenic risks in clinical therapy. Our previous studies have shown that long-term exposure to di-ethylhexyl phthalate (DEHP)/mono-ethylhexyl phthalate (MEHP) promotes chemotherapeutic drug resistance in colorectal cancer. In this study, we investigated the alteration of glycosylation in colorectal cancer following long-term plasticizers exposure. First, we determined the profiles of cell surface N-glycomes by using mass spectrometry and found out the alterations of α2,8-linkages glycans. Next, we analyzed the correlation between serum DEHP/MEHP levels and ST8SIA6 expression from matched tissues in total 110 colorectal cancer patients. Moreover, clinical specimens and TCGA database were used to analyze the expression of ST8SIA6 in advanced stage of cancer. Finally, we showed that ST8SIA6 regulated stemness in vitro and in vivo. Our results revealed long-term DEHP/MEHP exposure significantly caused cancer patients with poorer survival outcome and attenuated the expression of ST8SIA6 in cancer cells and tissue samples. As expected, silencing of ST8SIA6 promoted cancer stemness and tumorigenicity by upregulating stemness-associated proteins. In addition, the cell viability assay showed enhanced drug resistance in ST8SIA6 silencing cells treated with irinotecan. Besides, ST8SIA6 was downregulated in the advanced stage and positively correlated with tumor recurrence in colorectal cancer. Our results imply that ST8SIA6 potentially plays an important role in oncogenic effects with long-term phthalates exposure.


Subject(s)
Colorectal Neoplasms , Diethylhexyl Phthalate , Humans , Plasticizers/analysis , Diethylhexyl Phthalate/analysis , Glycosylation , Sialyltransferases/metabolism
12.
J Psychiatr Res ; 160: 210-216, 2023 04.
Article in English | MEDLINE | ID: mdl-36857985

ABSTRACT

INTRODUCTION: Amygdala and serotonergic system abnormalities have been documented in major depressive disorder (MDD). However, most studies have been conducted on recurrent MDD, and only a few have assessed their interaction. This study aimed to concurrently examine both the amygdala and serotonergic systems and their clinical relevance in first-episode, drug-naïve MDD. METHODS: This study included 27 patients with first-episode, drug-naïve MDD and 27 age- and gender-matched healthy controls (HCs). The amygdala substructure volumes were performed with Freesurfer from a 1.5 T magnetic resonance image. Serotonin transporter (SERT) availability was detected by single-photon emission computed tomography with 123I-ADAM. The Benjamini-Hochberg method was applied to adjust for multiple comparisons. RESULTS: No significant difference was found in the amygdala substructure volume and SERT availability between the two groups, respectively. Within MDD patients, the right medial, cortical nucleus, and centromedial volumes were positively associated with caudate SERT availability, respectively. Moreover, the right lateral nucleus volume in the amygdala was positively correlated with depression severity. However, these significances did not survive correction for multiple testing. CONCLUSIONS: There were no significant abnormalities in the amygdala substructure volumes and SERT availability in patients with first-episode, drug-naïve MDD. We did not observe an association between amygdala substructure volume and serotonergic dysregulation and their correlations with depression severity in patients with MDD. A larger sample size is warranted to elucidate the actual correlation.


Subject(s)
Depressive Disorder, Major , Humans , Serotonin Plasma Membrane Transport Proteins/metabolism , Pilot Projects , Tomography, Emission-Computed, Single-Photon , Amygdala/metabolism , Magnetic Resonance Imaging
13.
Schizophr Res ; 248: 263-270, 2022 10.
Article in English | MEDLINE | ID: mdl-36115191

ABSTRACT

BACKGROUND: Cognitive impairments, the main determinants of functional outcomes in schizophrenia, had limited treatment responses and need a better understanding of the mechanisms. Dysfunctions of the dopamine system and N-methyl-d-aspartate receptor (NMDAR), the primary pathophysiologies of schizophrenia, may impair cognition. This study explored the effects and interactions of striatal dopamine transporter (DAT) and plasma NMDAR-related amino acids on cognitive impairments in schizophrenia. METHODS: We recruited 36 schizophrenia patients and 36 age- and sex-matched healthy controls (HC). All participants underwent cognitive assessments of attention, memory, and executive function. Single-photon emission computed tomography with 99mTc-TRODAT and ultra-performance liquid chromatography were applied to determine DAT availability and plasma concentrations of eight amino acids, respectively. RESULTS: Compared with HC, schizophrenia patients had lower cognitive performance, higher methionine concentrations, decreased concentrations of glutamic acid, cysteine, aspartic acid, arginine, the ratio of glutamic acid to gamma-aminobutyric acid (Glu/GABA), and DAT availability in the left caudate nucleus (CN) and putamen. Regarding memory scores, Glu/GABA and the DAT availability in left CN and putamen exhibited positive relationships, while methionine concentrations showed negative associations in all participants. The DAT availability in left CN mediated the methionine-memory relationship. An exploratory backward stepwise regression analysis for the four biological markers associated with memory indicated that DAT availability in left CN and Glu/GABA remained in the final model. CONCLUSIONS: This study demonstrated the interactions of striatal DAT and NMDAR-related amino acids on cognitive impairments in schizophrenia. Future studies to comprehensively evaluate their complex interactions and treatment implications are warranted.


Subject(s)
Cognitive Dysfunction , Schizophrenia , Humans , Dopamine Plasma Membrane Transport Proteins/metabolism , Schizophrenia/complications , Schizophrenia/diagnostic imaging , Schizophrenia/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Dopamine/metabolism , Amino Acids/metabolism , Aspartic Acid/metabolism , Cysteine , Tomography, Emission-Computed, Single-Photon/methods , Corpus Striatum/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Methionine , Arginine/metabolism , gamma-Aminobutyric Acid/metabolism , Glutamates/metabolism , Tropanes
14.
J Biol Chem ; 298(10): 102442, 2022 10.
Article in English | MEDLINE | ID: mdl-36055405

ABSTRACT

Leukocyte cell-derived chemotaxin 2 (LECT2) acts as a tumor suppressor in hepatocellular carcinoma (HCC). However, the antineoplastic mechanism of LECT2, especially its influence on hepatic cancer stem cells (CSCs), remains largely unknown. In The Cancer Genome Atlas cohort, LECT2 mRNA expression was shown to be associated with stage, grade, recurrence, and overall survival in human HCC patients, and LECT2 expression was downregulated in hepatoma tissues compared with the adjacent nontumoral liver. Here, we show by immunofluorescence and immunoblot analyses that LECT2 was expressed at lower levels in tumors and in poorly differentiated HCC cell lines. Using functional assays, we also found LECT2 was capable of suppressing oncogenic behaviors such as cell proliferation, anchorage-independent growth, migration, invasiveness, and epithelial-mesenchymal transition in hepatoma cells. Moreover, we show exogenous LECT2 treatment inhibited CSC functions such as tumor sphere formation and drug efflux. Simultaneously, hepatic CSC marker expression was also downregulated, including expression of CD133 and CD44. This was supported by infection with adenovirus encoding LECT2 (Ad-LECT2) in HCC cells. Furthermore, in animal experiments, Ad-LECT2 gene therapy showed potent efficacy in treating HCC. We demonstrate LECT2 overexpression significantly promoted cell apoptosis and reduced neovascularization/CSC expansion in rat hepatoma tissues. Mechanistically, we showed using immunoblot and immunofluorescence analyses that LECT2 inhibited ß-catenin signaling via the suppression of the hepatocyte growth factor/c-MET axis to diminish CSC properties in HCC cells. In summary, we reveal novel functions of LECT2 in the suppression of hepatic CSCs, suggesting a potential alternative strategy for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/therapeutic use , Liver Neoplasms/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Rats , Genetic Therapy
15.
Nanomaterials (Basel) ; 12(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35957136

ABSTRACT

In this study, [Sr0.99Eu0.01]3MgSi2O8 phosphors were sintered at 1200-1400 °C for 1-5 h by using the solid-state reaction method. The crystallinity and morphology of these phosphors were characterized through X-ray diffraction analysis and field-emission scanning electron microscopy, respectively, to determine their luminescence. The photoluminescence properties, including the excitation and emission properties, of the prepared phosphors were investigated through fluorescence spectrophotometry. The α-Sr2SiO4, Sr2MgSi2O7, and Sr3MgSi2O8 phases coexisted in the [Sr0.99Eu0.01]3MgSi2O8 phosphors, which were synthesized at low temperatures. The particles of these phosphors had many fine hairs on their surface and resembled Clavularia viridis, which is a coral species. Transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the fine hairs contained the Sr2SiO4 and Sr2MgSi2O7 phases. However, when the [Sr0.99Eu0.01]3MgSi2O8 phosphors were sintered at 1400 °C, the Sr3MgSi2O8 phase was observed, and the Eu2+-doped Sr3MgSi2O8 phase dominated the only broad emission band, which had a central wavelength of 457 nm (blue light). The emission peaks at this wavelength were attributed to the 4f65d1-4f7 transition at the Sr2+(I) site, where Sr2+ was substituted by Eu2+. The average decay time of the synthesized phosphors was calculated to be 1.197 ms. The aforementioned results indicate that [Sr0.99Eu0.01]3MgSi2O8 can be used as a blue-emitting phosphor in ultraviolet-excited white light-emitting diodes.

16.
ACS Omega ; 7(20): 17384-17392, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35647472

ABSTRACT

In this study, a sapphire substrate with a patterned concave structure was used to prepare ZnO film/A-B glue, and the ZnO film/A-B glue with a patterned convex matrix was transferred onto a silicon wafer using the lift-off technology as the seed layer. Then, the hydrothermal method with different Zn(CH3COO)2 and C6H12N4 concentrations as precursors was used to synthesize ZnO nanoflower arrays on the patterned convex ZnO seed layer. XRD pattern, FESEM, FIB, and photoluminescence (PL) spectrometry were employed to observe and analyze the properties of the synthesized ZnO nanoflower arrays. When Zn(CH3COO)2 and C6H12N4 concentrations were 0.01, 0.02, 0.03, and 0.04 M, the average heights of the ZnO nanorods in the ZnO nanoflower arrays were 993, 1500, 1550, and 1650 nm, the average diameters of the ZnO nanorods were 50, 90, 105, and 225 nm, and the aspect ratios (H/D) of the ZnO nanorods were 19.9, 16.7, 14.8, and 7.33, respectively. A simple statistical and analytical method was investigated to estimate the densities (number of nanorods) of the ZnO nanoflower arrays in one 1 µm × 1 µm area. The total surface area (S) of the ZnO nanoflower arrays first increased from 5.05 × 106 and then reached a maximum value of 1.20 × 107 nm2 as Zn(CH3COO)2 and C6H12N4 concentrations increased from 0.01 to 0.02 M. For the systhesized ZnO nanoflower arrays, as the Zn(CH3COO)2 and C6H12N4 concentrations increased from 0.01 to 0.04 M, their total volume (V) increased from the 6.23 × 107 to 5.90 × 108 nm3 and the S/V ratio decreased from 8.10 × 10-2 to 1.84 × 10-2. We found that ZnO nanoflower arrays with Zn(CH3COO)2 and C6H12N4 concentrations of 0.2 M presented the maximum PL emission intensities. The calculated S/V ratios and X-ray photoelectron spectroscopy analyses are used to discuss the reasons for these results.

17.
J Psychiatr Res ; 151: 598-605, 2022 07.
Article in English | MEDLINE | ID: mdl-35636038

ABSTRACT

Cognitive impairments are crucial in functional outcomes of major depressive disorder (MDD). The effectiveness of currently available treatment methods for cognitive deficits is suboptimal. A cognitive test battery is often applied to evaluate cognition with multiple interrelated and difficult-to-interpret outcomes. Generating cognitive factor scores after the confirmation of a common cognitive structure and measurement invariance between healthy controls (HCs) and patients may aid in understanding cognition further. This methodology has been applied for several neuropsychiatric disorders, but not for MDD. Therefore, we conducted a series of exploratory factor analyses (EFA), confirmatory factor analyses (CFA), and multiple groups CFA (MGCFA) for a cognitive test battery in HCs and patients with MDD. The initial EFA of 106 HCs yielded a three-factor model-comprising attention, memory, and executive function. The CFA confirmed the initial model in other 94 HCs with revisions, which reasonably fit the cognitive data of 54 patients with MDD. MGCFA supported the measurement invariance of the determined model between HCs and patients with MDD. The associations of cognitive factor scores with age or education and the effect sizes of group differences in cognitive factor scores externally validated the determined model. In conclusion, this is the first study to demonstrate the measurement invariance of a cognitive model between HCs and patients with MDD using MGCFA. The measurement invariance substantiated valid group comparisons of factor scores and their relationships with other markers. The current results may be applicable for the development of improved treatment strategies for cognitive impairments in MDD.


Subject(s)
Cognitive Dysfunction , Depressive Disorder, Major , Attention , Cognition , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Cognitive Dysfunction/psychology , Executive Function , Humans , Neuropsychological Tests
18.
Psychosom Med ; 84(6): 685-694, 2022.
Article in English | MEDLINE | ID: mdl-35472074

ABSTRACT

OBJECTIVE: Cortisol is associated with cognition in both healthy individuals and patients with neuropsychiatric disorders. Regarding the effects of cortisol on the dopamine system and the association between dopamine transporter (DAT) and cognition, DAT might be a central target linking cortisol and cognition. This study explored the role of striatal DAT in the cortisol-cognition relationship. METHODS: We recruited 33 patients with carbon monoxide poisoning and 33 age- and sex-matched healthy controls. All participants underwent cognitive assessments of attention, memory, and executive function. Single-photon emission computed tomography with 99mTc-TRODAT was used to determine striatal DAT availability. Plasma cortisol, tumor necrosis factor α, and interleukin-10 levels were measured using enzyme-linked immunosorbent assays. RESULTS: Compared with healthy controls, patients with carbon monoxide poisoning had lower cognitive performance, bilateral striatal DAT availability, and plasma tumor necrosis factor-α levels and higher cortisol and interleukin-10 levels. In all participants, plasma cortisol level and bilateral striatal DAT availability were negatively and positively related to cognition, respectively, including memory and executive function with ß from -0.361 (95% confidence interval [CI] = -0.633 to -0.090) to 0.588 (95% CI = 0.319 to 0.858). Moreover, bilateral striatal DAT mediated the cortisol-cognition relationship with indirect effects from -0.067 (95% CI = -0.179 to -0.001) to -0.135 (95% CI = -0.295 to -0.024). The cytokine levels did not influence the mediation effects. CONCLUSIONS: This is the first study to demonstrate that striatal DAT mediates the cortisol-cognition relationship. Future studies are needed to comprehensively evaluate the role of the dopamine system in cortisol-cognition associations and treatment implications.


Subject(s)
Carbon Monoxide Poisoning , Dopamine Plasma Membrane Transport Proteins , Cognition , Dopamine , Humans , Hydrocortisone , Interleukin-10 , Tomography, Emission-Computed, Single-Photon/methods
19.
Genes (Basel) ; 13(4)2022 04 01.
Article in English | MEDLINE | ID: mdl-35456435

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most common RCC subtype with a high mortality. It has been reported that delta-like 1 homologue (DLK1) participates in the tumor microenvironmental remodeling of ccRCC, but the relationship between delta-like 2 homologue (DLK2, a DLK1 homologue) and ccRCC is still unclear. Thus, this study aims to investigate the role of DLK2 in the biological function and disease prognosis of ccRCC using bioinformatics analysis. The TNMplot database showed that DLK2 was upregulated in ccRCC tissues. From the UALCAN analysis, the overexpression of DLK2 was associated with advanced stage and high grade in ccRCC. Moreover, the Kaplan-Meier plotter (KM Plotter) database showed that DLK2 upregulation was associated with poor survival outcome in ccRCC. By the LinkedOmics analysis, DLK2 signaling may participated in the modulation of ccRCC extracellular matrix (ECM), cell metabolism, ribosome biogenesis, TGF-ß signaling and Notch pathway. Besides, Tumor Immune Estimation Resource (TIMER) analysis showed that the macrophage and CD8+ T cell infiltrations were associated with good prognosis in ccRCC patients. Finally, DLK2 overexpression was associated with the reduced macrophage recruitments and the M1-M2 polarization of macrophage in ccRCC tissues. Together, DLK2 may acts as a novel biomarker, even therapeutic target in ccRCC. However, this study lacks experimental validation, and further studies are required to support this viewpoint.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/metabolism , Computational Biology , Female , Humans , Kidney Neoplasms/metabolism , Male , Prognosis
20.
J Pers Med ; 12(3)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35330401

ABSTRACT

Sialylation of glycoproteins is modified by distinct sialyltransferases such as ST3Gal, ST6Gal, ST6GalNAc, or ST8SIA with α2,3-, α2,6-, or α2,8-linkages. Alteration of these sialyltransferases causing aberrant sialylation is associated with the progression of colon cancer. However, among the ST8- sialyltransferases, the role of ST8SIA6 in colon cancer remains poorly understood. In this study, we explored the involvement of ST8SIA6 in colon cancer using multiple gene databases. The relationship between ST8SIA6 expression and tumor stages/grades was investigated by UALCAN analysis, and Kaplan-Meier Plotter analysis was used to analyze the expression of ST8SIA6 on the survival outcome of colon cancer patients. Moreover, the biological functions of ST8SIA6 in colon cancer were explored using LinkedOmics and cancer cell metabolism gene DB. Finally, TIMER and TISMO analyses were used to delineate ST8SIA6 levels in tumor immunity and immunotherapy responses, respectively. ST8SIA6 downregulation was associated with an advanced stage and poorly differentiated grade; however, ST8SIA6 expression did not affect the survival outcomes in patients with colon cancer. Gene ontology analysis suggested that ST8SIA6 participates in cell surface adhesion, angiogenesis, and membrane vesicle trafficking. In addition, ST8SIA6 levels affected immunocyte infiltration and immunotherapy responses in colon cancer. Collectively, these results suggest that ST8SIA6 may serve as a novel therapeutic target towards personalized medicine for colon cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...