Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Comput Neurosci ; 14: 23, 2020.
Article in English | MEDLINE | ID: mdl-32327990

ABSTRACT

Biological realism of dendritic morphologies is important for simulating electrical stimulation of brain tissue. By adding point process modeling and conditional sampling to existing generation strategies, we provide a novel means of reproducing the nuanced branching behavior that occurs in different layers of granule cell dendritic morphologies. In this study, a heterogeneous Poisson point process was used to simulate branching events. Conditional distributions were then used to select branch angles depending on the orthogonal distance to the somatic plane. The proposed method was compared to an existing generation tool and a control version of the proposed method that used a homogeneous Poisson point process. Morphologies were generated with each method and then compared to a set of digitally reconstructed neurons. The introduction of a conditionally dependent branching rate resulted in the generation of morphologies that more accurately reproduced the emergent properties of dendritic material per layer, Sholl intersections, and proximal passive current flow. Conditional dependence was critically important for the generation of realistic granule cell dendritic morphologies.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5854-5857, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441667

ABSTRACT

Current parametric approaches to dendritic morphology generation are limited in their ability to replicate realistic branching. A non-parametric approach applying a point process filter and the expectation-maximization algorithm offers a data-based solution that estimates the dendritic branching rate based on observations of bifurcation events in real neurons. Point processes can then be simulated using this branching rate estimate to indicate when a generated morphology should branch. Morphologies generated using this technique match both basic and emergent property distributions of the real neurons used as input into the algorithm. Further refinement of branching angles will allow for a flexible tool to generate realistic morphologies of a variety of neuronal stereotypes.


Subject(s)
Computer Simulation , Dendrites , Neurons/cytology , Algorithms , Humans
3.
Article in English | MEDLINE | ID: mdl-31178619

ABSTRACT

Several attempts have been made in the past few years to develop and implement an automated segmentation of neonatal brain structural MRI. However, accurate automated MRI segmentation remains challenging in this population because of the low signal-to-noise ratio, large partial volume effects and inter-individual anatomical variability of the neonatal brain. In this paper, we propose a learning method for segmenting the whole brain cortical grey matter on neonatal T2-weighted images. We trained our algorithm using a neonatal dataset composed of 3 full-term and 4 preterm infants scanned at term equivalent age. Our segmentation pipeline combines the FAST algorithm from the FSL library software and a Bayesian segmentation approach to create a threshold matrix that minimizes the error of mislabeling brain tissue types. Our method shows promising results with our pilot training set. In both preterm and full-term neonates, automated Bayesian segmentation generates a smoother and more consistent parcellation compared to FAST, while successfully removing the subcortical structure and cleaning the edges of the cortical grey matter. This method show promising refinement of the FAST segmentation by considerably reducing manual input and editing required from the user, and further improving reliability and processing time of neonatal MR images. Further improvement will include a larger dataset of training images acquired from different manufacturers.

4.
Article in English | MEDLINE | ID: mdl-26737158

ABSTRACT

Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.


Subject(s)
Neurons/physiology , Animals , Membrane Potentials , Microelectrodes , Neural Networks, Computer , Retina/physiology , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...