Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 213: 113776, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37393971

ABSTRACT

Castor is industrially important non-edible oil seeds crop severely affected by soil borne pathogen Fusarium oxysporum f. sp. ricini which causes heavy economic losses among the castor growing states in India and worldwide. The development of Fusarium wilt resistant varieties in castor is also challenging because the genes identified for resistance are recessive in nature. Unlike transcriptomics and genomics, proteomics is always a method of choice for quick identification of novel proteins expressed during biological events. Therefore, comparative proteomic approach was employed for identification of proteins released in resistant genotype during Fusarium infection. Protein was extracted from inoculated 48-1 resistant and JI-35 susceptible genotype and subjected to 2D-gel electrophoresis coupled with RPLC-MS/MS. This analysis resulted in 18 unique peptides in resistant genotype and 8 unique peptides in susceptible genotype were identified through MASCOT search database. The real time expression study showed that 5 genes namely CCR 1, Germin like protein 5-1, RPP8, Laccase 4 and Chitinase like 6 was found highly up-regulated during Fusarium oxysporum infection. Furthermore, end point PCR analysis of c-DNA showed amplification of three genes namely Chitinase 6 like, RPP8 and ß-glucanase exclusively in resistant genotype indicating that these genes may be involved in resistance phenomenon in castor. Up-regulation of CCR-1 and Laccase 4 involved in lignin biosynthesis provides mechanical strength and may help to prevent the entry of fungal mycelia and protein Germin like 5-1 helps to neutralized ROS by SOD activity. The clear role of these genes can be further confirmed through functional genomics for castor improvement and also for development of transgenic in different crops for wilt resistance.


Subject(s)
Fusariosis , Fusarium , Ricinus , Proteomics/methods , Laccase , Tandem Mass Spectrometry , Peptides , Plant Diseases/microbiology
2.
Front Plant Sci ; 14: 1143778, 2023.
Article in English | MEDLINE | ID: mdl-37251772

ABSTRACT

Solanum khasianum is a medicinally important plant that is a source of steroidal alkaloids 'solasodine.' It has various industrial applications, including oral contraceptives and other pharmaceutical uses. The present study was based on 186 germplasm of S. khasianum, which were analyzed for the stability of economically important traits like solasodine content and fruit yield. The collected germplasm was planted during Kharif 2018, 2019, and 2020 in RCBD with three replications at the experimental farm of CSIR-NEIST, Jorhat, Assam, India. A multivariate approach for stability analysis was applied to identify stable germplasm of S. khasianum for economically important traits. The germplasm was analyzed for additive main effects and multiplicative interaction (AMMI), GGE biplot, multi-trait stability index, and Shukla's variance which were evaluated for three environments. The AMMI ANOVA revealed significant GE interaction for all the studied traits. The stable and high-yielding germplasm was identified from the AMMI biplot, GGE biplot, Shukla's variance value, and MTSI plot analysis. Lines no. 90, 85, 70, 107, and 62 were identified as highly stable fruit yielders while, lines no. 1, 146, and 68 were identified as stable high solasodine lines. However, considering both traits, i.e., high fruit yield and solasodine content, MTSI analysis was performed which showed that lines 1, 85, 70,155, 71, 114, 65, 86, 62, 116, 32, and 182 could be used in a breeding program. Thus, this identified germplasm can be considered for further varietal development and could be used in a breeding program. The findings of the present study would be beneficial for the S. khasianum breeding program.

SELECTION OF CITATIONS
SEARCH DETAIL
...