Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biochem Cell Biol ; 171: 106571, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608921

ABSTRACT

Current treatment options for triple-negative breast cancer (TNBC) are limited to toxic drug combinations of low efficacy. We recently identified an aryl-substituted fatty acid analogue, termed CTU, that effectively killed TNBC cells in vitro and in mouse xenograft models in vivo without producing toxicity. However, there was a residual cell population that survived treatment. The present study evaluated the mechanisms that underlie survival and renewal in CTU-treated MDA-MB-231 TNBC cells. RNA-seq profiling identified several pro-inflammatory signaling pathways that were activated in treated cells. Increased expression of cyclooxygenase-2 and the cytokines IL-6, IL-8 and GM-CSF was confirmed by real-time RT-PCR, ELISA and Western blot analysis. Increased self-renewal was confirmed using the non-adherent, in vitro colony-forming mammosphere assay. Neutralizing antibodies to IL-6, IL-8 and GM-CSF, as well as cyclooxygenase-2 inhibition suppressed the self-renewal of MDA-MB-231 cells post-CTU treatment. IPA network analysis identified major NF-κB and XBP1 gene networks that were activated by CTU; chemical inhibitors of these pathways and esiRNA knock-down decreased the production of pro-inflammatory mediators. NF-κB and XBP1 signaling was in turn activated by the endoplasmic reticulum (ER)-stress sensor inositol-requiring enzyme 1 (IRE1), which mediates the unfolded protein response. Co-treatment with an inhibitor of IRE1 kinase and RNase activities, decreased phospho-NF-κB and XBP1s expression and the production of pro-inflammatory mediators. Further, IRE1 inhibition also enhanced apoptotic cell death and prevented the activation of self-renewal by CTU. Taken together, the present findings indicate that the IRE1 ER-stress pathway is activated by the anti-cancer lipid analogue CTU, which then activates secondary self-renewal in TNBC cells.


Subject(s)
Cell Survival , Endoplasmic Reticulum Stress , Endoribonucleases , Protein Serine-Threonine Kinases , Female , Humans , Cell Line, Tumor , Cell Survival/drug effects , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Endoribonucleases/genetics , Fatty Acids/metabolism , MDA-MB-231 Cells , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy
2.
Eur J Pharmacol ; 939: 175470, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36543287

ABSTRACT

Mitochondria in tumor cells are functionally different from those in normal cells and could be targeted to develop new anticancer agents. We showed recently that the aryl-ureido fatty acid CTU is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells by increasing the production of reactive oxygen species (ROS), activating endoplasmic reticulum (ER)-stress and promoting apoptosis. However, prolonged treatment with high doses of CTU were required for in vivo anti-tumor activity. Thus, new strategies are now required to produce agents that have enhanced anticancer activity over CTU. In the present study we prepared a novel aryl-urea termed 3-thiaCTU, that contained an in-chain sulfur heteroatom, for evaluation in tumor cell lines and in mice carrying tumor xenografts. The principal finding to emerge was that 3-thiaCTU was several-fold more active than CTU in the activation of aryl-urea mechanisms that promoted cancer cell killing. Thus, in in vitro studies 3-thiaCTU disrupted the mitochondrial membrane potential, increased ROS production, activated ER-stress and promoted tumor cell apoptosis more effectively than CTU. 3-ThiaCTU was also significantly more active than CTUin vivo in mice that carried MDA-MB-231 cell xenografts. Compared to CTU, 3-thiaCTU prevented tumor growth more effectively and at much lower doses. These findings indicate that, in comparison to CTU, 3-thiaCTU is an aryl-urea with markedly enhanced activity that could now be suitable for development as a novel anticancer agent.


Subject(s)
Antineoplastic Agents , Fatty Acids , Humans , Animals , Mice , Fatty Acids/pharmacology , Fatty Acids/metabolism , Urea/pharmacology , Urea/therapeutic use , Reactive Oxygen Species/metabolism , Mitochondria , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/metabolism , Cell Line, Tumor , Endoplasmic Reticulum Stress , Membrane Potential, Mitochondrial
3.
Cancer Lett ; 526: 131-141, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34822928

ABSTRACT

The cancer cell mitochondrion is functionally different from that in normal cells and could be targeted to develop novel experimental therapeutics. The aryl-ureido fatty acid CTU (16({[4-chloro-3-(trifluoromethyl)phenyl]-carbamoyl}amino)hexadecanoic acid) is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells. Here we show that CTU rapidly depolarized the inner mitochondrial membrane, selectively inhibited complex III of the electron transport chain and increased reactive oxygen species (ROS) production. From RNA-seq analysis, endoplasmic reticulum (ER)-stress was a major activated pathway in CTU-treated cells and in MDA-MB-231 tumor xenografts from CTU-treated nu/nu mice. Mitochondrion-derived ROS activated the PERK-linked ER-stress pathway and induced the BH3-only protein NOXA leading to outer mitochondrial membrane (OMM) disruption. The lipid peroxyl scavenger α-tocopherol attenuated CTU-dependent ER-stress and apoptosis which confirmed the critical role of ROS. Oleic acid protected against CTU-mediated apoptosis by activating Mcl-1 expression, which increased NOXA sequestration and prevented OMM disruption. Taken together, CTU both uncouples mitochondrial electron transport and activates ROS production which promotes ER-stress-dependent OMM disruption and tumor cell death. Dual-mitochondrial targeting agents like CTU offer a novel approach for development of new anti-cancer therapeutics.


Subject(s)
Endoplasmic Reticulum Stress/immunology , Fatty Acids/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Animals , Apoptosis , Female , Humans , Mice
4.
Biochem Pharmacol ; 192: 114726, 2021 10.
Article in English | MEDLINE | ID: mdl-34389322

ABSTRACT

Migration and invasion promote tumor cell metastasis, which is the leading cause of cancer death. At present there are no effective treatments. Epidemiological studies have suggested that ω-3 polyunsaturated fatty acids (PUFA) may decrease cancer aggressiveness. In recent studies epoxide metabolites of ω-3 PUFA exhibited anti-cancer activity, although increased in vivo stability is required to develop useful drugs. Here we synthesized novel stabilized ureido-fatty acid ω-3 epoxide isosteres and found that one analogue - p-tolyl-ureidopalmitic acid (PTU) - inhibited migration and invasion by MDA-MB-231 breast cancer cells in vitro and in vivo in xenografted nu/nu mice. From proteomics analysis of PTU-treated cells major regulated pathways were linked to the actin cytoskeleton and actin-based motility. The principal finding was that PTU impaired the formation of actin protrusions by decreasing the secretion of Wnt5a, which dysregulated the Wnt/planar cell polarity (PCP) pathway and actin cytoskeletal dynamics. Exogenous Wnt5a restored invasion and Wnt/PCP signalling in PTU-treated cells. PTU is the prototype of a novel class of agents that selectively dysregulate the Wnt/PCP pathway by inhibiting Wnt5a secretion and actin dynamics to impair MDA-MB-231 cell migration and invasion.


Subject(s)
Cytoskeleton/metabolism , Fatty Acids, Omega-3/pharmacology , Signal Transduction/physiology , Wnt-5a Protein/antagonists & inhibitors , Wnt-5a Protein/metabolism , Animals , Cell Line, Tumor , Cytoskeleton/drug effects , Fatty Acids, Omega-3/chemistry , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness/pathology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays/methods
5.
Eur J Pharm Sci ; 129: 87-98, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30597206

ABSTRACT

We recently developed a novel aryl-urea fatty acid (CTU; 16({[4-chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)hexadecanoic acid) that impaired the viability of MDA-MB-231 breast cancer cells in vitro and in mouse xenograft models in vivo. At present there is a deficiency of information on the structural requirements for the activity of CTU. Our initial study suggested that electron withdrawing groups were required on the aryl ring, and in this study we further evaluated the influence of the electronic properties of aromatic substitution on the capacity of CTU analogues to decrease MDA-MB-231 breast cancer cell viability. Analogues that contained strong electron-withdrawing groups in the meta- and para-positions of the aryl ring exhibited improved activity over CTU. Effective analogues down-regulated the cyclins D1, E1 and B1, and the cyclin-dependent kinases (CDKs) 4 and 6, that form complexes to coordinate cell cycle progression. Active CTU analogues also stimulated the phosphorylation and activation of the p38 MAP kinase signalling pathway in cells and both decreased proliferation (5-bromo-2'-deoxyuridine (brdU) incorporation) and activated apoptosis (executioner caspase-3/7 activity). These agents offer a new approach to target the cell cycle at multiple phases in order to efficiently prevent cancer cell expansion. Inclusion of the present structural information in drug design approaches could enhance the development of optimal analogues of aryl-urea fatty acids as potential anti-cancer agents.


Subject(s)
Breast Neoplasms/drug therapy , Cell Survival/drug effects , Cyclins/metabolism , Fatty Acids/pharmacology , MAP Kinase Signaling System/drug effects , Urea/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Apoptosis/drug effects , Breast Neoplasms/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinases/metabolism , Down-Regulation/drug effects , Female , Humans , Phosphorylation/drug effects
6.
J Med Chem ; 60(20): 8661-8666, 2017 10 26.
Article in English | MEDLINE | ID: mdl-28921987

ABSTRACT

Cancer cell mitochondria are promising anticancer drug targets because they control cell death and are structurally and functionally different from normal cell mitochondria. We synthesized arylurea fatty acids and found that the analogue 16-({[4-chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)hexadecanoic acid (13b) decreased proliferation and activated apoptosis in MDA-MB-231 breast cancer cells in vitro and in vivo. In mechanistic studies 13b emerged as the prototype of a novel class of mitochondrion-targeted agents that deplete cardiolipin and promote cancer cell death.


Subject(s)
Breast Neoplasms/pathology , Fatty Acids/pharmacology , Mitochondria/drug effects , Urea/chemistry , Animals , Apoptosis/drug effects , Cell Line, Tumor , Fatty Acids/chemistry , Female , Humans , Mice , Mitochondrial Membranes/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...