Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38645260

ABSTRACT

Ergothioneine (EGT) is a diet-derived, atypical amino acid that accumulates to high levels in human tissues. Reduced EGT levels have been linked to age-related disorders, including neurodegenerative and cardiovascular diseases, while EGT supplementation is protective in a broad range of disease and aging models in mice. Despite these promising data, the direct and physiologically relevant molecular target of EGT has remained elusive. Here we use a systematic approach to identify how mitochondria remodel their metabolome in response to exercise training. From this data, we find that EGT accumulates in muscle mitochondria upon exercise training. Proteome-wide thermal stability studies identify 3-mercaptopyruvate sulfurtransferase (MPST) as a direct molecular target of EGT; EGT binds to and activates MPST, thereby boosting mitochondrial respiration and exercise training performance in mice. Together, these data identify the first physiologically relevant EGT target and establish the EGT-MPST axis as a molecular mechanism for regulating mitochondrial function and exercise performance.

2.
Curr Opin Chem Biol ; 79: 102435, 2024 04.
Article in English | MEDLINE | ID: mdl-38382148

ABSTRACT

Cysteines are amenable to a diverse set of modifications that exhibit critical regulatory functions over the proteome and thereby control a wide range of cellular processes. Proteomic technologies have emerged as a powerful strategy to interrogate cysteine modifications across the proteome. Recent advancements in enrichment strategies, multiplexing capabilities and increased analytical sensitivity have enabled deeper quantitative cysteine profiling, capturing a substantial proportion of the cysteine proteome. This is complemented by a rapidly growing repertoire of analytical strategies illuminating the diverse landscape of cysteine modifications. Cysteine chemoproteomics technologies have evolved into a powerful strategy to facilitate the development of covalent drugs, opening unprecedented opportunities to target the extensive undrugged proteome. Herein we review recent technological and scientific advances that shape the cysteine proteomics field.


Subject(s)
Cysteine , Sulfhydryl Compounds , Cysteine/metabolism , Proteome/metabolism , Proteomics , Oxidation-Reduction
3.
Nat Metab ; 6(3): 567-577, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38378996

ABSTRACT

Uptake of circulating succinate by brown adipose tissue (BAT) and beige fat elevates whole-body energy expenditure, counteracts obesity and antagonizes systemic tissue inflammation in mice. The plasma membrane transporters that facilitate succinate uptake in these adipocytes remain undefined. Here we elucidate a mechanism underlying succinate import into BAT via monocarboxylate transporters (MCTs). We show that succinate transport is strongly dependent on the proportion that is present in the monocarboxylate form. MCTs facilitate monocarboxylate succinate uptake, which is promoted by alkalinization of the cytosol driven by adrenoreceptor stimulation. In brown adipocytes, we show that MCT1 primarily facilitates succinate import. In male mice, we show that both acute pharmacological inhibition of MCT1 and congenital depletion of MCT1 decrease succinate uptake into BAT and consequent catabolism. In sum, we define a mechanism of succinate uptake in BAT that underlies its protective activity in mouse models of metabolic disease.


Subject(s)
Adipocytes, Brown , Succinic Acid , Male , Mice , Animals , Adipocytes, Brown/metabolism , Succinic Acid/metabolism , Adipose Tissue, Brown/metabolism , Biological Transport , Membrane Transport Proteins/metabolism
4.
bioRxiv ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38260676

ABSTRACT

Zinc is an essential micronutrient that regulates a wide range of physiological processes, principally through Zn 2+ binding to protein cysteine residues. Despite being critical for modulation of protein function, for the vast majority of the human proteome the cysteine sites subject to regulation by Zn 2+ binding remain undefined. Here we develop ZnCPT, a comprehensive and quantitative mapping of the zinc-regulated cysteine proteome. We define 4807 zinc-regulated protein cysteines, uncovering protein families across major domains of biology that are subject to either constitutive or inducible modification by zinc. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc regulation, and nominate malignancies sensitive to zinc-induced cytotoxicity. In doing so, we discover a mechanism of zinc regulation over Glutathione Reductase (GSR) that drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation over protein function.

5.
J Am Chem Soc ; 145(40): 21937-21944, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37767920

ABSTRACT

Targeted protein degradation relies on small molecules that induce new protein-protein interactions between targets and the cellular protein degradation machinery. Most of these small molecules feature specific ligands for ubiquitin ligases. Recently, the attachment of cysteine-reactive chemical groups to pre-existing small molecule inhibitors has been shown to drive specific target degradation. We demonstrate here that different cysteine-reactive groups can specify target degradation via distinct ubiquitin ligases. By focusing on the bromodomain ligand JQ1, we identify cysteine-reactive functional groups that drive BRD4 degradation by either DCAF16 or DCAF11. Unlike proteolysis-targeting chimeric molecules (PROTACs), the new compounds use a single small molecule ligand with a well-positioned cysteine-reactive group to induce protein degradation. The finding that nearly identical compounds can engage multiple ubiquitination pathways suggests that targeting cellular pathways that search for and eliminate chemically reactive proteins is a feasible avenue for converting existing small molecule drugs into protein degrader molecules.

6.
bioRxiv ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36909624

ABSTRACT

Uptake of circulating succinate by brown adipose tissue (BAT) and beige fat elevates whole body energy expenditure, counteracts obesity, and antagonizes systemic tissue inflammation in mice. The plasma membrane transporters that facilitate succinate uptake in these adipocytes remain undefined. Here we elucidate a mechanism underlying succinate import into BAT via monocarboxylate transporters (MCTs). We show that succinate transport is strongly dependent on the proportion of it present in the monocarboxylate form. MCTs facilitate monocarboxylate succinate uptake, which is promoted by alkalinization of the cytosol driven by adrenoreceptor stimulation. In brown adipocytes, we show that MCT1 primarily facilitates succinate import, however other members of the MCT family can partially compensate and fulfill this role in the absence of MCT1. In mice, we show that acute pharmacological inhibition of MCT1 and 2 decreases succinate uptake into BAT. Conversely, congenital genetic depletion of MCT1 alone has little effect on BAT succinate uptake, indicative of additional transport mechanisms with high capacity in vivo . In sum, we define a mechanism of succinate uptake in BAT that underlies its protective activity in mouse models of metabolic disease.

7.
Nature ; 616(7958): 790-797, 2023 04.
Article in English | MEDLINE | ID: mdl-36921622

ABSTRACT

Lactate is abundant in rapidly dividing cells owing to the requirement for elevated glucose catabolism to support proliferation1-6. However, it is not known whether accumulated lactate affects the proliferative state. Here we use a systematic approach to determine lactate-dependent regulation of proteins across the human proteome. From these data, we identify a mechanism of cell cycle regulation whereby accumulated lactate remodels the anaphase promoting complex (APC/C). Remodelling of APC/C in this way is caused by direct inhibition of the SUMO protease SENP1 by lactate. We find that accumulated lactate binds and inhibits SENP1 by forming a complex with zinc in the SENP1 active site. SENP1 inhibition by lactate stabilizes SUMOylation of two residues on APC4, which drives UBE2C binding to APC/C. This direct regulation of APC/C by lactate stimulates timed degradation of cell cycle proteins, and efficient mitotic exit in proliferative human cells. This mechanism is initiated upon mitotic entry when lactate abundance reaches its apex. In this way, accumulation of lactate communicates the consequences of a nutrient-replete growth phase to stimulate timed opening of APC/C, cell division and proliferation. Conversely, persistent accumulation of lactate drives aberrant APC/C remodelling and can overcome anti-mitotic pharmacology via mitotic slippage. In sum, we define a biochemical mechanism through which lactate directly regulates protein function to control the cell cycle and proliferation.


Subject(s)
Anaphase-Promoting Complex-Cyclosome , Cell Cycle Proteins , Cell Cycle , Lactic Acid , Humans , Anaphase , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/metabolism , Lactic Acid/metabolism , Mitosis
8.
Nat Chem Biol ; 19(7): 815-824, 2023 07.
Article in English | MEDLINE | ID: mdl-36823351

ABSTRACT

Creatine kinases (CKs) provide local ATP production in periods of elevated energetic demand, such as during rapid anabolism and growth. Thus, creatine energetics has emerged as a major metabolic liability in many rapidly proliferating cancers. Whether CKs can be targeted therapeutically is unknown because no potent or selective CK inhibitors have been developed. Here we leverage an active site cysteine present in all CK isoforms to develop a selective covalent inhibitor of creatine phosphagen energetics, CKi. Using deep chemoproteomics, we discover that CKi selectively engages the active site cysteine of CKs in cells. A co-crystal structure of CKi with creatine kinase B indicates active site inhibition that prevents bidirectional phosphotransfer. In cells, CKi and its analogs rapidly and selectively deplete creatine phosphate, and drive toxicity selectively in CK-dependent acute myeloid leukemia. Finally, we use CKi to uncover an essential role for CKs in the regulation of proinflammatory cytokine production in macrophages.


Subject(s)
Creatine Kinase , Creatine , Creatine Kinase/chemistry , Creatine Kinase/metabolism , Creatine/pharmacology , Cysteine , Phosphotransferases , Protein Isoforms
9.
Cell Rep ; 42(1): 112008, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36662620

ABSTRACT

Reactive oxygen species (ROS) regulate the activities of inflammasomes, which are innate immune signaling organelles that induce pyroptosis. The mechanisms by which ROS control inflammasome activities are unclear and may be multifaceted. Herein, we report that the protein gasdermin D (GSDMD), which forms membrane pores upon cleavage by inflammasome-associated caspases, is a direct target of ROS. Exogenous and endogenous sources of ROS, and ROS-inducing stimuli that prime cells for pyroptosis induction, promote oligomerization of cleaved GSDMD, leading to membrane rupture and cell death. We find that ROS enhance GSDMD activities through oxidative modification of cysteine 192 (C192). Within macrophages, GSDMD mutants lacking C192 show impaired ability to form membrane pores and induce pyroptosis. Reciprocal mutagenesis studies reveal that C192 is the only cysteine within GSDMD that mediates ROS responsiveness. Cellular redox state is therefore a key determinant of GSDMD activities.


Subject(s)
Inflammasomes , Intracellular Signaling Peptides and Proteins , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Inflammasomes/metabolism , Gasdermins , Reactive Oxygen Species/metabolism , Cysteine/metabolism , Neoplasm Proteins/metabolism , Oxidation-Reduction
10.
Proc Natl Acad Sci U S A ; 120(2): e2204750120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595699

ABSTRACT

Exercise is a nonpharmacological intervention that improves health during aging and a valuable tool in the diagnostics of aging-related diseases. In muscle, exercise transiently alters mitochondrial functionality and metabolism. Mitochondrial fission and fusion are critical effectors of mitochondrial plasticity, which allows a fine-tuned regulation of organelle connectiveness, size, and function. Here we have investigated the role of mitochondrial dynamics during exercise in the model organism Caenorhabditis elegans. We show that in body-wall muscle, a single exercise session induces a cycle of mitochondrial fragmentation followed by fusion after a recovery period, and that daily exercise sessions delay the mitochondrial fragmentation and physical fitness decline that occur with aging. Maintenance of proper mitochondrial dynamics is essential for physical fitness, its enhancement by exercise training, and exercise-induced remodeling of the proteome. Surprisingly, among the long-lived genotypes we analyzed (isp-1,nuo-6, daf-2, eat-2, and CA-AAK-2), constitutive activation of AMP-activated protein kinase (AMPK) uniquely preserves physical fitness during aging, a benefit that is abolished by impairment of mitochondrial fission or fusion. AMPK is also required for physical fitness to be enhanced by exercise, with our findings together suggesting that exercise may enhance muscle function through AMPK regulation of mitochondrial dynamics. Our results indicate that mitochondrial connectivity and the mitochondrial dynamics cycle are essential for maintaining physical fitness and exercise responsiveness during aging and suggest that AMPK activation may recapitulate some exercise benefits. Targeting mechanisms to optimize mitochondrial fission and fusion, as well as AMPK activation, may represent promising strategies for promoting muscle function during aging.


Subject(s)
AMP-Activated Protein Kinases , Mitochondrial Dynamics , Animals , Mitochondrial Dynamics/physiology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Aging/physiology , Caenorhabditis elegans/metabolism , Exercise , Physical Fitness , Muscle, Skeletal/metabolism
11.
Cell Metab ; 35(3): 535-549.e7, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36681077

ABSTRACT

Proteins are secreted from cells to send information to neighboring cells or distant tissues. Because of the highly integrated nature of energy balance systems, there has been particular interest in myokines and adipokines. These are challenging to study through proteomics because serum or plasma contains highly abundant proteins that limit the detection of proteins with lower abundance. We show here that extracellular fluid (EF) from muscle and fat tissues of mice shows a different protein composition than either serum or tissues. Mass spectrometry analyses of EFs from mice with physiological perturbations, like exercise or cold exposure, allowed the quantification of many potentially novel myokines and adipokines. Using this approach, we identify prosaposin as a secreted product of muscle and fat. Prosaposin expression stimulates thermogenic gene expression and induces mitochondrial respiration in primary fat cells. These studies together illustrate the utility of EF isolation as a discovery tool for adipokines and myokines.


Subject(s)
Extracellular Fluid , Saposins , Mice , Animals , Extracellular Fluid/metabolism , Saposins/metabolism , Muscles/metabolism , Adipose Tissue/metabolism , Adipokines
12.
Cell ; 185(24): 4654-4673.e28, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36334589

ABSTRACT

Brown adipose tissue (BAT) regulates metabolic physiology. However, nearly all mechanistic studies of BAT protein function occur in a single inbred mouse strain, which has limited the understanding of generalizable mechanisms of BAT regulation over physiology. Here, we perform deep quantitative proteomics of BAT across a cohort of 163 genetically defined diversity outbred mice, a model that parallels the genetic and phenotypic variation found in humans. We leverage this diversity to define the functional architecture of the outbred BAT proteome, comprising 10,479 proteins. We assign co-operative functions to 2,578 proteins, enabling systematic discovery of regulators of BAT. We also identify 638 proteins that correlate with protection from, or sensitivity to, at least one parameter of metabolic disease. We use these findings to uncover SFXN5, LETMD1, and ATP1A2 as modulators of BAT thermogenesis or adiposity, and provide OPABAT as a resource for understanding the conserved mechanisms of BAT regulation over metabolic physiology.


Subject(s)
Adipose Tissue, Brown , Proteome , Humans , Mice , Animals , Adipose Tissue, Brown/metabolism , Proteome/metabolism , Thermogenesis/physiology , Adiposity , Obesity/metabolism , Mice, Inbred C57BL , Proto-Oncogene Proteins/metabolism
13.
Nat Metab ; 4(8): 961-962, 2022 08.
Article in English | MEDLINE | ID: mdl-35931883
14.
Nature ; 606(7912): 180-187, 2022 06.
Article in English | MEDLINE | ID: mdl-35614225

ABSTRACT

Mitochondria generate heat due to H+ leak (IH) across their inner membrane1. IH results from the action of long-chain fatty acids on uncoupling protein 1 (UCP1) in brown fat2-6 and ADP/ATP carrier (AAC) in other tissues1,7-9, but the underlying mechanism is poorly understood. As evidence of pharmacological activators of IH through UCP1 and AAC is lacking, IH is induced by protonophores such as 2,4-dinitrophenol (DNP) and cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP)10,11. Although protonophores show potential in combating obesity, diabetes and fatty liver in animal models12-14, their clinical potential for treating human disease is limited due to indiscriminately increasing H+ conductance across all biological membranes10,11 and adverse side effects15. Here we report the direct measurement of IH induced by DNP, FCCP and other common protonophores and find that it is dependent on AAC and UCP1. Using molecular structures of AAC, we perform a computational analysis to determine the binding sites for protonophores and long-chain fatty acids, and find that they overlap with the putative ADP/ATP-binding site. We also develop a mathematical model that proposes a mechanism of uncoupler-dependent IH through AAC. Thus, common protonophoric uncouplers are synthetic activators of IH through AAC and UCP1, paving the way for the development of new and more specific activators of these two central mediators of mitochondrial bioenergetics.


Subject(s)
Mitochondria , Mitochondrial ADP, ATP Translocases , Protons , Uncoupling Protein 1 , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Adipose Tissue, Brown/metabolism , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/metabolism , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacology , Fatty Acids/metabolism , Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Uncoupling Protein 1/metabolism
15.
Nat Chem Biol ; 18(5): 461-469, 2022 05.
Article in English | MEDLINE | ID: mdl-35484255

ABSTRACT

Metabolites once considered solely in catabolism or anabolism turn out to have key regulatory functions. Among these, the citric acid cycle intermediate succinate stands out owing to its multiple roles in disparate pathways, its dramatic concentration changes and its selective cell release. Here we propose that succinate has evolved as a signaling modality because its concentration reflects the coenzyme Q (CoQ) pool redox state, a central redox couple confined to the mitochondrial inner membrane. This connection is of general importance because CoQ redox state integrates three bioenergetic parameters: mitochondrial electron supply, oxygen tension and ATP demand. Succinate, by equilibrating with the CoQ pool, enables the status of this central bioenergetic parameter to be communicated from mitochondria to the rest of the cell, into the circulation and to other cells. The logic of this form of regulation explains many emerging roles of succinate in biology, and suggests future research questions.


Subject(s)
Succinic Acid , Ubiquinone , Energy Metabolism , Mitochondria/metabolism , Oxidation-Reduction , Succinic Acid/metabolism , Ubiquinone/metabolism
17.
J Exp Med ; 219(3)2022 03 07.
Article in English | MEDLINE | ID: mdl-35103755

ABSTRACT

Obesity is one of the leading preventable causes of cancer; however, little is known about the effects of obesity on anti-tumor immunity. Here, we investigated the effects of obesity on CD8 T cells in mouse models and patients with endometrial cancer. Our findings revealed that CD8 T cell infiltration is suppressed in obesity, which was associated with a decrease in chemokine production. Tumor-resident CD8 T cells were also functionally suppressed in obese mice, which was associated with a suppression of amino acid metabolism. Similarly, we found that a high BMI negatively correlated with CD8 infiltration in human endometrial cancer and that weight loss was associated with a complete pathological response in six of nine patients. Moreover, immunotherapy using anti-PD-1 led to tumor rejection in lean and obese mice and partially restored CD8 metabolism and anti-tumor immunity. These findings highlight the suppressive effects of obesity on CD8 T cell anti-tumor immunity, which can partially be reversed by weight loss and/or immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/etiology , Neoplasms/metabolism , Obesity/metabolism , Tumor Microenvironment/immunology , Amino Acids/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Diet, High-Fat , Disease Models, Animal , Immunotherapy , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Obese , Neoplasms/pathology , Neoplasms/therapy , Obesity/etiology
18.
Methods Mol Biol ; 2448: 141-153, 2022.
Article in English | MEDLINE | ID: mdl-35167096

ABSTRACT

Thermogenic adipose tissue plays a vital function in regulating whole-body energy expenditure and nutrient homeostasis due to its capacity to dissipate chemical energy as heat, in a process called non-shivering thermogenesis. A reduction of creatine levels in adipocytes impairs thermogenic capacity and promotes diet-induced obesityKazak et al, Cell 163, 643-55, 2015; Kazak et al, Cell Metab 26, 660-671.e3, 2017; Kazak et al, Nat Metab 1, 360-370, 2019). Mechanistically, thermogenic respiration can be promoted by the liberation of an excess quantity of ADP that is dependent on addition of creatine. A model of a two-enzyme system, which we term the Futile Creatine Cycle, has been posited to support this thermogenic action of creatine. Futile creatine cycling can be monitored in purified mitochondrial preparations wherein creatine-dependent liberation of ADP is monitored through the measurement of oxygen consumption under ADP-limiting conditions. The current model proposes that, in thermogenic fat cells, mitochondria-targeted creatine kinase B (CKB) uses mitochondrial-derived ATP to phosphorylate creatine (Rahbani JF, Nature 590, 480-485, 2021). The creatine kinase reaction generates phosphocreatine and ADP, and ADP stimulates respiration. Next, a pool of mitochondrial phosphocreatine is directly hydrolyzed by a phosphatase, to regenerate creatine. The liberated creatine can then engage mitochondrial CKB to trigger another round of this cycle to support ADP-dependent respiration. In this model, the coordinated action of creatine phosphorylation and phosphocreatine hydrolysis triggers a futile cycle that produces a molar excess of mitochondrial ADP to promote thermogenic respiration (Rahbani JF, Nature 590, 480-485, 2021; Kazak and Cohen, Nat Rev Endocrinol 16, 421-436, 2020). Here, we provide a detailed method to perform respiratory measurements on isolated mitochondria and calculate the stoichiometry of creatine-dependent ADP liberation. This method provides a direct measure of the futile creatine cycle.


Subject(s)
Creatine , Thermogenesis , Creatine/metabolism , Energy Metabolism , Phosphocreatine , Substrate Cycling
19.
Cell Metab ; 34(1): 140-157.e8, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34861155

ABSTRACT

Uncoupling protein 1 (UCP1) is a major regulator of brown and beige adipocyte energy expenditure and metabolic homeostasis. However, the widely employed UCP1 loss-of-function model has recently been shown to have a severe deficiency in the entire electron transport chain of thermogenic fat. As such, the role of UCP1 in metabolic regulation in vivo remains unclear. We recently identified cysteine-253 as a regulatory site on UCP1 that elevates protein activity upon covalent modification. Here, we examine the physiological importance of this site through the generation of a UCP1 cysteine-253-null (UCP1 C253A) mouse, a precise genetic model for selective disruption of UCP1 in vivo. UCP1 C253A mice exhibit significantly compromised thermogenic responses in both males and females but display no measurable effect on fat accumulation in an obesogenic environment. Unexpectedly, we find that a lack of C253 results in adipose tissue redox stress, which drives substantial immune cell infiltration and systemic inflammatory pathology in adipose tissues and liver of male, but not female, mice. Elevation of systemic estrogen reverses this male-specific pathology, providing a basis for protection from inflammation due to loss of UCP1 C253 in females. Together, our results establish the UCP1 C253 activation site as a regulator of acute thermogenesis and sex-dependent tissue inflammation.


Subject(s)
Adipose Tissue, Brown , Cysteine , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Animals , Cysteine/metabolism , Energy Metabolism , Female , Inflammation/metabolism , Male , Mice , Thermogenesis/physiology , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
20.
Nat Rev Endocrinol ; 18(2): 71-72, 2022 02.
Article in English | MEDLINE | ID: mdl-34893789
SELECTION OF CITATIONS
SEARCH DETAIL
...