Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 98(2): 611-20, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24162086

ABSTRACT

A two step biological process for the conversion of grass biomass to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) was achieved through the use of anaerobic and aerobic microbial processes. Anaerobic digestion (mixed culture) of ensiled grass was achieved with a recirculated leach bed bioreactor resulting in the production of a leachate, containing 15.3 g/l of volatile fatty acids (VFAs) ranging from acetic to valeric acid with butyric acid predominating (12.8 g/l). The VFA mixture was concentrated to 732.5 g/l with a 93.3 % yield of butyric acid (643.9 g/l). Three individual Pseudomonas putida strains, KT2440, CA-3 and GO16 (single pure cultures), differed in their ability to grow and accumulate PHA from VFAs. P. putida CA-3 achieved the highest biomass and PHA on average with individual fatty acids, exhibited the greatest tolerance to higher concentrations of butyric acid (up to 40 mM) compared to the other strains and exhibited a maximum growth rate (µMAX = 0.45 h⁻¹). Based on these observations P. putida CA-3 was chosen as the test strain with the concentrated VFA mixture derived from the AD leachate. P. putida CA-3 achieved 1.56 g of biomass/l and accumulated 39 % of the cell dry weight as PHA (nitrogen limitation) in shake flasks. The PHA was composed predominantly of 3-hydroxydecanoic acid (>65 mol%).


Subject(s)
Bioreactors , Fatty Acids, Volatile/metabolism , Poaceae/metabolism , Polyhydroxyalkanoates/metabolism , Pseudomonas putida/metabolism
2.
J Colloid Interface Sci ; 338(1): 111-20, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19570544

ABSTRACT

Novel polymer-clay-based composite membranes were prepared by incorporating sodium montmorillonite (Na(+)-MMT) clay into quaternized chitosan. The resulting membranes were characterized by Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WXAD), and thermogravimetric analysis (TGA). The effect of membrane swelling was studied by varying the water concentration in the feed. The membranes were employed for the pervaporation dehydration of isopropanol in terms of feed composition and Na(+)-MMT clay loading. The experimental results demonstrated that membrane containing 10 mass% of Na(+)-MMT clay showed the highest separation selectivity of 14,992 with a flux of 14.23x10(-2) kg/m(2) h at 30 degrees C for 10 mass% of water in the feed. The total flux and flux of water are found to be overlapping each other particularly for clay-incorporated membranes, signifying that the composite membranes developed in the present study involving quaternized chitosan and Na(+)-MMT clay are highly selective toward water. From the temperature-dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. The resulting activation energy values obtained for water permeation (E(pw)) are much lower than those of isopropanol permeation (E(pIPA)), suggesting that the developed composite membranes have higher separation efficiency for the water-isopropanol system. The estimated E(p) and E(D) values ranged between 8.97 and 11.89, and 7.56 and 9.88 kJ/mol, respectively. The positive heat of sorption (DeltaH(s)) values were obtained for all the membranes, suggesting that Henry's mode of sorption is predominant in the process.

SELECTION OF CITATIONS
SEARCH DETAIL
...