Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Neurochem ; 168(7): 1402-1419, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38445395

ABSTRACT

The role of nitrergic system in modulating the action of psychostimulants on reward processing is well established. However, the relevant anatomical underpinnings and scope of the involved interactions with mesolimbic dopaminergic system have not been clarified. Using immunohistochemistry, we track the changes in neuronal nitric oxide synthase (nNOS) containing cell groups in the animals conditioned to intracranial self-stimulation (ICSS) via an electrode implanted in the lateral hypothalamus-medial forebrain bundle (LH-MFB) area. An increase in the nNOS immunoreactivity was noticed in the cells and fibers in the ventral tegmental area (VTA) and nucleus accumbens shell (AcbSh), the primary loci of the reward system. In addition, nNOS was up-regulated in the nucleus accumbens core (AcbC), vertical limb of diagonal band (VDB), locus coeruleus (LC), lateral hypothalamus (LH), superficial gray layer (SuG) of the superior colliculus, and periaqueductal gray (PAG). The brain tissue fragments drawn from these areas showed a change in nNOS mRNA expression, but in opposite direction. Intracerebroventricular (icv) administration of nNOS inhibitor, 7-nitroindazole (7-NI) showed decreased lever press activity in a dose-dependent manner in ICSS task. While an increase in the dopamine (DA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) efflux was noted in the microdialysates collected from the AcbSh of ICSS rats, pre-administration of 7-NI (icv route) attenuated the response. The study identifies nitrergic centers that probably mediate sensory, cognitive, and motor components of the goal-directed behavior.


Subject(s)
Nitric Oxide Synthase Type I , Self Stimulation , Animals , Male , Rats , Nitric Oxide Synthase Type I/metabolism , Brain/metabolism , Brain/drug effects , Rats, Sprague-Dawley , Indazoles/pharmacology , Enzyme Inhibitors/pharmacology
2.
J Pharmacol Toxicol Methods ; 118: 107194, 2022.
Article in English | MEDLINE | ID: mdl-35779851

ABSTRACT

Strategies drawn at understanding the functional attributes of specific neural circuits often necessitate electrical stimulation and pharmacological manipulation at the same anatomical site. We describe a simple, inexpensive and reliable method to fabricate a bipolar electrode-cannula assembly for delivery of electric pulses and administration of neuroactive agents at the same site in the rat brain. The assembly consisting of a guide cannula, dummy cannula, internal cannula and bipolar electrode was fabricated using syringe needles, wires and simple electronic components. To test the usefulness of the device, it was implanted on the skull of a rat specifically targeting the posterior ventral tegmental area (pVTA). The rat was conditioned to press the lever in intracranial self-stimulation (ICSS) protocol in an operant chamber. The number of lever presses in a 30 min task was monitored. Intra-pVTA administration with bicuculline (GABAA receptor antagonist) increased the lever press activity, while muscimol (GABAA receptor agonist) had opposite effect. The results confirm that the group of neurons responding to the electrical stimulation probably receive GABAergic inputs. The device is light in weight, costs less than a dollar and can be fabricated from readily available components. It can serve a useful purpose in electrically stimulating any given target in the brain - before, during or after pharmacological manipulation at the same locus and may find application in neuropharmacological and neurobehavioral studies.


Subject(s)
Cannula , Receptors, GABA-A , Animals , Rats , Self Stimulation/physiology , Electric Stimulation , GABA-A Receptor Agonists , Brain , Electrodes
3.
Mol Neurobiol ; 59(2): 890-915, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34797522

ABSTRACT

Coincident excitation via different sensory modalities encoding objects of positive salience is known to facilitate learning and memory. With a view to dissect the contribution of visual cues in inducing adaptive neural changes, we monitored the lever press activity of a rat conditioned to self-administer sweet food pellets in the presence/absence of light cues. Application of light cues facilitated learning and consolidation of long-term memory. The superior colliculus (SC) of rats trained on light cue showed increased neuronal activity, dendritic branching, and brain-derived neurotrophic factor (BDNF) protein and mRNA expression. Concomitantly, the hippocampus showed augmented neurogenesis as well as BDNF protein and mRNA expression. While intra-SC administration of U0126 (inhibitor of ERK 1/2 and long-term memory) impaired memory formation, lidocaine (local anaesthetic) hindered memory recall. The light cue-dependent sweet food pellet self-administration was coupled with increased efflux of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens shell (AcbSh). In conditioned rats, pharmacological inhibition of glutamatergic signalling in dentate gyrus (DG) reduced lever press activity, as well as DA and DOPAC secretion in the AcbSh. We suggest that the neuroplastic changes in the SC and hippocampus might represent memory engrams sculpted by visual cues encoding reward information.


Subject(s)
Cues , Superior Colliculi , Animals , Hippocampus/metabolism , Nucleus Accumbens/metabolism , Rats , Reward
4.
J Neurochem ; 158(5): 1172-1185, 2021 09.
Article in English | MEDLINE | ID: mdl-34287909

ABSTRACT

Neuropeptide cocaine- and amphetamine-regulated transcript (CART) is known to influence the activity of the canonical mesolimbic dopaminergic pathway and modulate reward seeking behaviour. CART neurons of the lateral hypothalamus (LH) send afferents to the ventral tegmental area (VTA) and paraventricular thalamic nucleus (PVT) and these nuclei, in turn, send secondary projections to nucleus accumbens. We try to dissect the precise sites of CART's action in these circuits in promoting reward. Rats were implanted with bipolar electrode targeted at the lateral hypothalamus-medial forebrain bundle (LH-MFB) and trained to press the lever through intracranial self-stimulation (ICSS) protocol. CART (55-102) administered directly into posterior VTA (pVTA) or PVT of the conditioned rats significantly increased the number of lever presses, indicating reward-promoting activity of the peptide. Concomitant increase in dopamine (DA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) efflux was noted in the microdialysate collected from the nucleus accumbens shell (AcbSh). On the other hand, immunoneutralization of endogenous CART with CART antibodies injected directly in the pVTA or PVT reduced the lever press activity as well as DA and DOPAC efflux in the AcbSh. Injection of CART (1-39) in pVTA or PVT was ineffective. We suggest that CART cells in the LH-MFB area send afferents to (a) pVTA and influence dopaminergic neurons projecting to AcbSh and (b) PVT, from where the secondary neurons may feed into the AcbSh. Excitation of the CARTergic pathway to the pVTA as well as the PVT seems to promote DA release in the AcbSh and contribute to the generation of reward.


Subject(s)
Dopamine/metabolism , Nerve Net/metabolism , Nerve Tissue Proteins/administration & dosage , Nerve Tissue Proteins/metabolism , Nucleus Accumbens/metabolism , Reward , Animals , Electrodes, Implanted , Male , Microdialysis/methods , Nerve Net/drug effects , Nucleus Accumbens/drug effects , Rats , Rats, Wistar
5.
Prog Neurobiol ; 202: 102048, 2021 07.
Article in English | MEDLINE | ID: mdl-33798614

ABSTRACT

Reward induces activity-dependant gene expression and synaptic plasticity-related changes. Lysine-specific histone demethylase 1 (LSD1), a key enzyme driving histone modifications, regulates transcription in neural circuits of memory and emotional behavior. Herein, we focus on the role of LSD1 in modulating the expression of brain derived neurotrophic factor (BDNF), the master regulator of synaptic plasticity, in the lateral hypothalamus-medial forebrain bundle (LH-MFB) circuit during positive reinforcement. Rats, trained for intracranial self-stimulation (ICSS) via an electrode-cannula assembly in the LH-MFB area, were assayed for lever press activity, epigenetic parameters and dendritic sprouting. LSD1 expression and markers of synaptic plasticity like BDNF and dendritic arborization in the LH, showed distinct increase in conditioned animals. H3K4me2 levels at Bdnf IV and Bdnf IX promoters were increased in ICSS-conditioned rats, but H3K9me2 was decreased. While intra LH-MFB treatment with pan Lsd1 siRNA inhibited lever press activity, analyses of LH tissue showed reduction in BDNF expression and levels of H3K4me2 and H3K9me2. However, co-administration of BDNF peptide restored lever press activity mitigated by Lsd1 siRNA. BDNF expression in LH, driven by LSD1 via histone demethylation, may play an important role in reshaping the reward pathway and hold the key to decode the molecular basis of addiction.


Subject(s)
Hypothalamic Area, Lateral , Medial Forebrain Bundle , Animals , Brain-Derived Neurotrophic Factor , Histone Demethylases , RNA, Small Interfering , Rats , Rats, Wistar , Reward
6.
Mol Neurobiol ; 58(3): 1162-1184, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33099744

ABSTRACT

The recurrent events of mild trauma exacerbate the vulnerability for post-traumatic stress disorder; however, the underlying molecular mechanisms are scarcely known. The repeated mild traumatic brain injury (rMTBI) perturbs redox homeostasis which is primarily managed by superoxide dismutase 2 (SOD2). The current study investigates the role of DNA methylation in SOD2 gene regulation and its involvement in rMTBI-induced persistent neuropathology inflicted by weight drop injury paradigm. The oxidative damage, neurodegenerative indicators, and SOD2 function and its regulation in the hippocampus were analyzed after 48 h and 30 days of rMTBI. The temporal and episodic increase in ROS levels (oxidative stress) heightened 8-hydroxyguanosine levels indicating oxidative damage after rMTBI that was concomitant with decline in SOD2 function. In parallel, occupancy of DNMT3b at SOD2 promoter was higher post 30 days of the first episode of rMTBI causing hypermethylation at SOD2 promoter. This epigenetic silencing of SOD2 promoter was sustained after the second episode of rMTBI causing permanent blockade in SOD2 response. The resultant oxidative stress further culminated into the increasing number of degenerating neurons. The treatment with 5-azacytidine, a pan DNMT inhibitor, normalized DNA methylation levels and revived SOD2 function after the second episode of rMTBI. The release of blockade in SOD2 expression by DNMT inhibition also normalized the post-traumatic oxidative consequences and relieved the neurodegeneration and deficits in learning and memory as measured by novel object recognition test. In conclusion, DNMT3b-mediated DNA methylation plays a critical role in SOD2 gene regulation in the hippocampus, and the perturbations therein post rMTBI are detrimental to redox homeostasis manifesting into neurological consequences.


Subject(s)
Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , Epigenesis, Genetic , Hippocampus/enzymology , Oxidative Stress/genetics , Superoxide Dismutase/metabolism , Animals , Azacitidine/pharmacology , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , Down-Regulation , Gene Silencing , Male , Models, Biological , Nerve Degeneration/complications , Nerve Degeneration/pathology , PC12 Cells , Promoter Regions, Genetic/genetics , Rats , Rats, Wistar , DNA Methyltransferase 3B
7.
Neuroscience ; 431: 205-221, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32035118

ABSTRACT

Apart from reproduction, estrogen influences a multitude of processes. Increase in estrogen levels in women is known to promote reward probably mediated via the melanocortin and dopamine systems. Reduced estrogen in post-menopausal women attenuates reward, evoking the need for stimulation with greater rewarding salience. This is reflected in the well-recognized phenomena of difficulty in quitting and increased craving for nicotine in women following the onset of menopause. The present study aims at understanding the role of melanocortin receptors (MC-R) in nicotine-induced reward behavior following ovariectomy in rats. The MC4-R mRNA level was increased in ipsilateral nucleus accumbens (Acb) of the intact rats implanted with electrode in medial forebrain bundle and trained in intracranial self-stimulation (ICSS) paradigm. Additional groups of ICSS trained rats were ovariectomized (OVX) and subjected to reward evaluation. Trained OVX rats revealed a significant increase in threshold frequency and rightward shift in rate frequency curve, suggesting reward deficit behavior. However, pre-administration with nicotine, alpha-melanocyte stimulating hormone (α-MSH) or NDP-MSH (MC4-R agonist) to OVX animals restored the rewarding activity in ICSS protocol; HS014 (MC4-R antagonist) suppressed the lever press activity. Prior treatment with sub-effective doses of α-MSH or NDP-MSH potentiated the reward effect of nicotine, but was attenuated by HS014. Alpha-MSH-immunoreactivity was decreased in the Acb shell, arcuate and paraventricular nucleus of hypothalamus, and ventral bed nucleus of stria terminalis in the OVX rats, while nicotine treatment restored the same. We suggest a role for the endogenous MC system, perhaps acting via MC4-R, in the nicotine-induced reward in OVX rats.


Subject(s)
Brain/drug effects , Nicotine , Receptor, Melanocortin, Type 4 , Reward , Animals , Female , Hypothalamus/metabolism , Melanocortins , Nicotine/pharmacology , Nucleus Accumbens/metabolism , Ovariectomy , Rats
8.
Brain Res ; 1728: 146595, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31830460

ABSTRACT

Reward deficit, expressed as anhedonia, is one of the major symptoms associated with neuropsychiatric disorders, but the underlying maladaptations have not been understood. Herein, we test the hypothesis that the neuropeptide cocaine- and amphetamine-regulated transcript (CART) may participate in the process. The study is justified since the peptide is a major player in inducing satiety and also processing of reward. The rats were socially isolated to induce reward deficit and conditioned to self-stimulate via an electrode in lateral hypothalamus (LH)-medial forebrain bundle (MFB) region. Compared to group-housed control rats, the socially isolated animals showed decreased lever press activity and elevated ICSS threshold indicating anhedonia-like condition. However, the effects of social isolation were alleviated by CART administered via intracerebroventricular route. The changes in the expression of CART protein and mRNA were screened using immunofluorescence and qRT-PCR methods, respectively. Socially isolated rats showed reduction in the expression of CART in the LH, nucleus accumbens shell (AcbSh) and posterior ventral tegmental area (pVTA) and CART mRNA in the Acb and LH. Double immunostaining with antibodies against CART and synaptophysin revealed significant loss of colabeled elements in LH, AcbSh and pVTA. We suggest that down-regulation of endogenous CARTergic system in the LH-pVTA-AcbSh reward circuitry may be causal to motivational anhedonia like phenotype seen in neuropsychiatric conditions.


Subject(s)
Nerve Tissue Proteins/physiology , Reward , Social Isolation , Anhedonia , Animals , Hypothalamic Area, Lateral/metabolism , Locomotion , Male , Medial Forebrain Bundle/metabolism , Motivation , Nerve Tissue Proteins/administration & dosage , Nerve Tissue Proteins/genetics , Neuropeptides/metabolism , Rats , Rats, Wistar , Self Stimulation/physiology
9.
Brain Res ; 1711: 183-192, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30664848

ABSTRACT

Impaired attention and memory represent some of the major long-term consequences of brain injuries. However, little is known about the underlying molecular mechanisms of brain trauma-induced cognitive decline. Histone deacetylases (HDACs) in the hippocampus are believed to impact learning and memory. Herein, we have induced repeated mild traumatic brain injury (rMTBI) in rats by using weight-drop paradigm, examined the recognition memory using novel object recognition task, and assessed the HDAC activities in the hippocampus post 48 h and 30 days of rMTBI. The recognition memory was significantly compromised in the rMTBI-exposed rats at both the time points. The rMTBI increased mRNA levels of different isoforms of HDACs (HDAC2-5 and HDAC11) at different time points coupled with rise in nuclear and cytosolic HDAC activities. However, a mild decrease in HDAC8 mRNA levels was observed at 30 days time point. As a corollary, rMTBI also caused persistent decrease in the levels of acetylated histone H3-Lys 9 (H3-K9ac) in promoter region of cocaine- and amphetamine-regulated transcript (CART) gene with concurrent decline in CART mRNA and peptide (CARTp) levels. Furthermore, the treatment with trichostatin A (TSA), a pan HDAC inhibitor, restored the rMTBI-induced deficits in recognition memory and HDAC activities with commensurate changes in the H3-K9ac and CART mRNA levels. Together, these results suggest that rMTBI may trigger persistent changes in HDAC-mediated histone acetylation at the CART gene promoter culminating into deficits in learning and memory. Further, the present study also identifies therapeutic potential of HDAC inhibitors in rescuing MTBI-induced cognitive deficits.


Subject(s)
Brain Concussion/physiopathology , Hippocampus/enzymology , Histone Deacetylases/metabolism , Learning/physiology , Memory Disorders/enzymology , Acetylation , Animals , Brain Concussion/metabolism , Brain Injuries, Traumatic/complications , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Hippocampus/physiology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/physiology , Male , Maze Learning/drug effects , Memory/drug effects , Memory Disorders/etiology , Memory Disorders/metabolism , Memory Disorders/physiopathology , Rats , Rats, Wistar , Recognition, Psychology , Temporal Lobe/metabolism
10.
Behav Brain Res ; 348: 9-21, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29580892

ABSTRACT

Although the role of cocaine- and amphetamine-regulated transcript peptide (CART) in modulating the mesolimbic reward pathway has been suggested, underlying cellular mechanisms have not been elucidated. Herein, we investigate the involvement of Gi/o dependent protein kinase A (PKA)/extracellular signal-regulated kinase (ERK)/cAMP response element binding protein (CREB) signaling in CART induced reward behavior. The rat was implanted with a stimulating electrode targeted at the lateral hypothalamus (LH)-medial forebrain bundle (MFB) and conditioned to intracranial self-stimulation (ICSS) in an operant chamber. Intracerebroventricular (icv) administration of CART (55-102) dose-dependently lowered ICSS threshold suggesting reward promoting action, however, pretreatment with subeffective doses of Gi/o inhibitor (pertussis toxin, PTX) or PKA inhibitor (Rp-cAMPS) or ERK inhibitor (U0126) via icv route, attenuated CART mediated reward experience. Operant conditioned rats showed increased pCREB levels in the nucleus accumbens shell (AcbSh), ventral tegmental area (VTA) and hypothalamic paraventricular nucleus (PVN). Infusion of CART (icv) in the conditioned rats augmented the population of pCREB positive cells in the AcbSh, VTA and PVN areas, but not in the arcuate nucleus (ARC). Pretreatment with U0126 significantly decreased CART induced pCREB activation in the AcbSh and VTA, but not in PVN and ARC. ICSS or CART induced CREB mRNA expression in Acb and VTA was attenuated by U0126. We suggest that recruitment of Gi/o dependent PKA/ERK/CREB phosphorylation signaling in Acb and VTA might play an important role in CART induced reward behavior.


Subject(s)
Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/physiology , Animals , Conditioning, Operant/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Hypothalamic Area, Lateral/physiology , MAP Kinase Signaling System/physiology , Male , Medial Forebrain Bundle/physiology , Nerve Tissue Proteins/genetics , Nucleus Accumbens/drug effects , Peptides/metabolism , Peptides/pharmacology , Phosphorylation/drug effects , Rats , Rats, Wistar , Reward , Self Stimulation/drug effects , Signal Transduction/drug effects , Ventral Tegmental Area/drug effects
11.
Brain Struct Funct ; 223(3): 1313-1328, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29116427

ABSTRACT

Paraventricular thalamic nucleus (PVT) serves as a transit node processing food and drug-associated reward information, but its afferents and efferents have not been fully defined. We test the hypothesis that the CART neurons in the lateral hypothalamus (LH) project to the PVT neurons, which in turn communicate via the glutamatergic fibers with the nucleus accumbens shell (AcbSh), the canonical site for reward. Rats conditioned to self-stimulate via an electrode in the right LH-medial forebrain bundle were used. Intra-PVT administration of CART (55-102) dose-dependently (10-50 ng/rat) lowered intracranial self-stimulation (ICSS) threshold and increased lever press activity, suggesting reward-promoting action of the peptide. However, treatment with CART antibody (intra-PVT) or MK-801 (NMDA antagonist, intra-AcbSh) produced opposite effects. A combination of sub-effective dose of MK-801 (0.01 µg/rat, intra-AcbSh) and effective dose of CART (25 ng/rat, intra-PVT) attenuated CART's rewarding action. Further, we screened the LH-PVT-AcbSh circuit for neuroadaptive changes induced by conditioning experience. A more than twofold increase was noticed in the CART mRNA expression in the LH on the side ipsilateral to the implanted electrode for ICSS. In addition, the PVT of conditioned rats showed a distinct increase in the (a) c-Fos expressing cells and CART fiber terminals, and (b) CART and vesicular glutamate transporter 2 immunostained elements. Concomitantly, the AcbSh showed a striking increase in expression of NMDA receptor subunit NR1. We suggest that CART in LH-PVT and glutamate in PVT-AcbSh circuit might support food-seeking behavior under natural conditions and also store reward memory.


Subject(s)
Glutamic Acid/metabolism , Hypothalamic Area, Lateral/cytology , Midline Thalamic Nuclei/cytology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Nucleus Accumbens/physiology , Reward , Animals , Antibodies/pharmacology , Conditioning, Operant/physiology , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Gene Expression Regulation/drug effects , Glucose Transporter Type 2/metabolism , Hypothalamic Area, Lateral/diagnostic imaging , Locomotion/drug effects , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/pharmacology , Neural Pathways/physiology , Peptide Fragments/pharmacology , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...