Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(11): 13733-13742, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35261243

ABSTRACT

Superabsorbent polymer gels can absorb large amounts of water (100-1000× their dry weight). For the past 50 years, many scientists such as de Gennes have proposed to extract mechanical work from gel expansion/contraction, which could pave the way for "artificial muscles". However, slow rates of gel expansion have limited these efforts: macroscale (∼cm) gels take over 24 h to expand to their equilibrium size. Gels can be made to expand faster if their characteristic length scale is reduced, e.g., by making a macroscopic gel porous. Still, gels that are both superabsorbent and able to expand rapidly have not yet been realized. Here, we create gels at the macroscale (∼cm or larger) that are porous, highly robust, superabsorbent and expand much faster than any gels thus far. Our approach involves the in situ foaming of a monomer solution (acrylic acid and acrylamide) using a double-barreled syringe that has acid and base in its two barrels. Gas (CO2) is generated at the mixing tip of the syringe by the acid-base reaction, and gas bubbles are stabilized by an amphiphilic polymer in one of the barrels. The monomers are then polymerized by ultraviolet (UV) light to form the gel around the bubbles, and the material is dried under ambient conditions to give a porous solid. When this dry gel is added to water, it absorbs water at a rate of 20 g/g·s until an equilibrium is achieved at ∼300× its weight. In the process, each gel dimension increases by ∼20%/s until its final dimensions are more than 3× larger. Such rapid and appreciable expansion can be easily observed by the eye, and remarkably, the swollen gel is robust enough to be picked up by hand. SEM images reveal a porosity of >90% and an interconnected network of pores. The gels are responsive to pH, and a full cycle of expansion (in regular water) and contraction (at pH 10 or in ethanol) can be completed within about 60 s. We use gel expansion to rapidly lift weights against gravity, resulting in ∼0.4 mJ of work being done over 40 s, which translates to a power density of 260 mW/kg. This ability to harness the chemical potential energy from the gel to do useful mechanical work could enable new designs for mechano-chemical engines─and potentially for artificial muscles.

2.
ACS Appl Mater Interfaces ; 13(12): 13958-13967, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33749251

ABSTRACT

Bleeding from injuries to the torso region is a leading cause of fatalities in the military and in young adults. Such bleeding cannot be stopped by applying direct pressure (compression) of a bandage. An alternative is to introduce a foam at the injury site, with the expansion of the foam counteracting the bleeding. Foams with an active hemostatic agent have been tested for this purpose, but the barrier created by these foams is generally not strong enough to resist blood flow. In this paper, we introduce a new class of foams with enhanced rheological properties that enable them to form a more effective barrier to blood loss. These aqueous foams are delivered out of a double-barrelled syringe by combining precursors that produce bubbles of gas (CO2) in situ. In addition, one barrel contains a cationic polymer (hydrophobically modified chitosan, hmC) and the other an anionic polymer (hydrophobically modified alginate, hmA). Both these polymers function as hemostatic agents due to their ability to connect blood cells into networks. The amphiphilic nature of these polymers also enables them to stabilize gas bubbles without the need for additional surfactants. hmC-hmA foams have a mousse-like texture and exhibit a high modulus and yield stress. Their properties are attributed to the binding of hmC and hmA chains (via electrostatic and hydrophobic interactions) to form a coacervate around the gas bubbles. Rheological studies are used to contrast the improved rheology of hmC-hmA foams (where a coacervate arises) with those formed by hmC alone (where there is no such coacervate). Studies with animal wound models also confirm that the hmC-hmA foams are more effective at curtailing bleeding than the hmC foams due to their greater mechanical integrity.


Subject(s)
Alginates/chemistry , Biocompatible Materials/chemistry , Chitosan/analogs & derivatives , Hemostatics/chemistry , Alginates/administration & dosage , Alginates/therapeutic use , Animals , Biocompatible Materials/administration & dosage , Biocompatible Materials/therapeutic use , Cattle , Chitosan/administration & dosage , Chitosan/therapeutic use , Gases/chemistry , Hemorrhage/therapy , Hemostatics/administration & dosage , Hemostatics/therapeutic use , Liver/injuries , Rheology , Surface-Active Agents/administration & dosage , Surface-Active Agents/chemistry , Surface-Active Agents/therapeutic use , Swine
3.
Langmuir ; 35(20): 6657-6668, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31039316

ABSTRACT

In this work, we have developed a model to describe the behavior of liquid drops upon impaction on hydrophobic particle bed and verified it experimentally. Poly(tetrafluoroethylene) (PTFE) particles were used to coat drops of water, aqueous solutions of glycerol (20, 40, and 60% v/v), and ethanol (5 and 12% v/v). The experiments were conducted for Weber number ( We) ranging from 8 to 130 and Reynolds number ( Re) ranging from 370 to 4460. The bed porosity was varied from 0.8 to 0.6. The experimental values of ßmax (ratio of the diameter at the maximum spreading condition to the initial drop diameter) were estimated from the time-lapsed images captured using a high-speed camera. The theoretical ßmax was estimated by making energy balances on the liquid drop. The proposed model accounts for the energy losses due to viscous dissipation and crater formation along with a change in kinetic energy and surface energy. A good agreement was obtained between the experimental ßmax and the estimated theoretical ßmax. The proposed model yielded a least % absolute average relative deviation (% AARD) of 5.5 ± 4.3 compared to other models available in the literature. Further, it was found that the liquid drops impacting on particle bed are completely coated with PTFE particles with ßmax values greater than 2.

SELECTION OF CITATIONS
SEARCH DETAIL
...