Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Toxicol In Vitro ; 98: 105830, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641231

ABSTRACT

Local drug delivery systems based on bioceramics ensure safe and effective treatment of bone defects and anticancer therapy. A promising drug delivery scaffold material for bone treatment applications is diopside (CaMgSi2O6) which is bioactive, degradable, and possesses drug-release ability. Currently, in vitro assessment of drug release from biomaterials is performed mostly on a 2D cell monolayer. However, to interpret and integrate biochemical signals, cells need a 3D microenvironment that provides cell-cell and cell-extracellular matrix interactions. In this regard, 3D cell models are gaining popularity. In this work, we proposed the protocol for evaluation of the effect of doxorubicin released from diopside on MG-63 cells and primary human fibroblasts in 3D culture conditions. Tissue spheroids with similar diameters were incubated with doxorubicin-loaded diopside for 72 h, the amount of diopside was calculated in accordance with the required doxorubicin concentration. We demonstrated that doxorubicin is gradually released from diopside and exhibits an activity similar to that of the pure drug at the same total concentration. It is important to note that doxorubicin was more potent on MG-63 spheroids compared to HF spheroids, which confirmed the reliability of spheroids as 3D models of tumor and healthy tissues.


Subject(s)
Antibiotics, Antineoplastic , Doxorubicin , Drug Liberation , Spheroids, Cellular , Humans , Doxorubicin/pharmacology , Spheroids, Cellular/drug effects , Antibiotics, Antineoplastic/pharmacology , Cell Line, Tumor , Fibroblasts/drug effects , Cell Survival/drug effects , Cell Culture Techniques, Three Dimensional/methods
2.
Res Sq ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260385

ABSTRACT

B-cell maturation antigen (BCMA) plays a pathobiologic role in myeloma and is a validated target with five BCMA-specific therapeutics having been approved for relapsed/refractory disease. However, these drugs are not curative, and responses are inferior in patients with molecularly-defined high-risk disease, including those with deletion 17p (del17p) involving the tumor suppressor TP53, supporting the need for further drug development. Del17p has been associated with reduced copy number and gene expression of RNA polymerase II subunit alpha (POLR2A) in other tumor types. We therefore studied the possibility that HDP-101, an anti-BCMA antibody drug conjugate (ADC) with the POLR2A poison α-amanitin could be an attractive agent in myeloma, especially with del17p. HDP-101 reduced viability in myeloma cell lines representing different molecular disease subtypes, and overcame adhesion-mediated and both conventional and novel drug resistance. After confirming that del17p is associated with reduced POLR2A levels in publicly available myeloma patient databases, we engineered TP53 wild-type cells with a TP53 knockout (KO), POLR2A knockdown (KD), or both, the latter to mimic del17p. HDP-101 showed potent anti-myeloma activity against all tested cell lines, and exerted enhanced efficacy against POLR2A KD and dual TP53 KO/POLR2A KD cells. Mechanistic studies showed HDP-101 up-regulated the unfolded protein response, activated apoptosis, and induced immunogenic cell death. Notably, HDP-101 impacted CD138-positive but not-negative primary cells, showed potent efficacy against aldehyde dehydrogenase-positive clonogenic cells, and eradicated myeloma in an in vivo cell line-derived xenograft (CDX). Interestingly, in the CDX model, prior treatment with HDP-101 precluded subsequent engraftment on tumor cell line rechallenge in a manner that appeared to be dependent in part on natural killer cells and macrophages. Finally, HDP-101 was superior to the BCMA-targeted ADC belantamab mafodotin against cell lines and primary myeloma cells in vitro, and in an in vivo CDX. Together, the data support the rationale for translation of HDP-101 to the clinic, where it is now undergoing Phase I trials, and suggest that it could emerge as a more potent ADC for myeloma with especially interesting activity against the high-risk del17p myeloma subtype.

3.
J Burn Care Res ; 45(1): 80-84, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37864840

ABSTRACT

Self-inflicted burns (SIBs) are preventable injuries that often occur due to suicidal intent or deliberate self-harm. The incidence of SIB and demographics vary across different countries. This study highlights our regional experience of SIB over almost 2 decades, assessing characteristics and outcomes. A retrospective chart review of all patients assessed at a UK regional burns center, presenting with SIB, from 2003 to 2021, was performed. Subgroup analyses based on gender, the presence or absence of pre-existing psychiatric disorders, and in-hospital patient mortality were undertaken. The relationship between annual mental health funding and the incidence of SIB was assessed. Over the study period, a total of 285 SIB cases, with a median age of 42.84 years, were presented to our center. The majority of patients were male (63.2%) and had a pre-existing psychiatric disorder (74.7%). Flame burns were the most frequent type of injury (82.1%) and the median total BSA (TBSA) was 10.25%. The average length of hospital stay was 10 days and the inpatient mortality rate was 20.7%, significantly greater than the mortality of the rest of the cohort (3.7%, P < .01). SIB survivors were younger and had less severe burns, relative to non-survivors. There was no statistically significant correlation between the incidence of SIBs and mental health funding. SIBs account for a minority of referrals to our regional burns center. Adequately funded regional and national measures should be implemented to reduce the incidence and impact of these injuries, alongside appropriate mental health support.


Subject(s)
Burns , Self-Injurious Behavior , Humans , Male , Female , Adult , Retrospective Studies , Self-Injurious Behavior/epidemiology , Burns/epidemiology , Burns/therapy , Length of Stay , United Kingdom/epidemiology
4.
Int J Biol Macromol ; 256(Pt 1): 128059, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37989428

ABSTRACT

This study aimed to functionalize a novel porous PLGA (Poly lactic-co-glycolic acid) composite scaffold in combination with nano­calcium sulphate (nCS) and/or fucoidan (FU) to induce osteogenic differentiation of human bone marrow stromal cells. The composite scaffolds (PLGA-nCS-FU, PLGA-nCS or PLGA-FU) were fabricated and subjected to characterization using Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Scanning electron microscopy (SEM) and Energy Dispersive X-Ray (EDX). The biocompatibility and osteogenic induction potential of scaffolds on seeded human bone marrow derived mesenchymal stromal cells (hBMSCs) were studied using cell attachment and alamar blue cell viability and alkaline phosphatase (ALP), osteocalcin and osteogenic gene expression, respectively. The composition of different groups was reflected in FTIR, XRD and EDX. The SEM micrographs revealed a difference in the surface of the scaffold before and after FU addition. The confocal imaging and SEM micrographs confirmed the attachment of cells onto all three composite scaffolds. However, the AB assay indicated a significant increase (p < 0.05) in cell viability/proliferation seeded on PLGA-nCS-FU on day 21 and 28 as compared with other combinations. A 2-fold significant increase (p < 0.05) in ALP and OC secretion of seeded hBMSCs onto PLGA-nCS-FU was observed when compared with other combinations. A significant increase in RUNX2, OPN, COL-I and ALP genes were observed in the cells seeded on PLGA-nCS-FU on day 14 and 28 as compared with day 0. In conclusion, the incorporation of both Fucoidan and Nano­calcium sulphate with PLGA showed a promising improvement in the osteogenic potential of hBMSCs. Therefore, PLGA-nCS-FU could be the ideal candidate for subsequent pre-clinical studies to develop a successful bone substitute to repair critical bone defects.


Subject(s)
Glycolates , Mesenchymal Stem Cells , Polysaccharides , Tissue Engineering , Humans , Tissue Engineering/methods , Osteogenesis , Tissue Scaffolds/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Glycols , Bone Marrow , Cell Differentiation , Sulfates , Bone Marrow Cells
5.
Cureus ; 15(9): e46081, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37900512

ABSTRACT

The superficial radial nerve (SRN) is vulnerable to injury following trauma with a high incidence of resultant nerve tether and neuroma formation. The SRN has an anatomical predisposition to neuroma formation, with research indicating that its propensity to neuroma development is out of proportion with its likelihood for injury. In addition, SRN neuromas have been described as one of the more painful and difficult neuromas to manage. Despite this, the published literature to date is chiefly focused on neuroma and scar tether treatment options rather than more impactful work on neuroma prevention, which can be safely delivered at the time of primary surgery. Treatment of established neuroma or nerve tether is notoriously difficult, and existing techniques have inconsistent outcomes, with patients often requiring multiple trips to the theatre. The authors present a novel technique for neuroma and scar tether prevention using an adipofascial flap accompanied by patient examples of our experience using this approach as an adjunct during the primary SRN repair, creating a gliding, interposing layer to prevent subsequent nerve traction pain and symptomatic neuroma. We identified five patients presenting with dorsal wrist injuries involving the SRN and one or more tendons. Patients' follow-up duration was a mean of 3.5 months (one to eight months). All follow-up patients showed no symptoms of a neuroma or nerve tether pain. All patients were discharged without re-referral or further surgery. Our patient sample demonstrates promising results using an adipofascial interposition flap as a prophylactic measure in traumatic injuries to reduce nerve tether pain and symptomatic neuroma formation in the SRN.

6.
ACS Omega ; 8(30): 26782-26792, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37546623

ABSTRACT

Amorphous calcium phosphate (ACP) is the first solid phase precipitated from a supersaturated calcium phosphate solution. Naturally, ACP is formed during the initial stages of biomineralization and stabilized by an organic compound. Carboxylic groups containing organic compounds are known to regulate the nucleation and crystallization of hydroxyapatite. Therefore, from a biomimetic point of view, the synthesis of carboxylate ions containing ACP (ACPC) is valuable. Usually, ACP is synthesized with fewer steps than ACPC. The precipitation reaction of ACP is rapid and influenced by pH, temperature, precursor concentration, stirring conditions, and reaction time. Due to phosphates triprotic nature, controlling pH in a multistep approach becomes tedious. Here, we developed a new ACP and ACPC synthesis approach and thoroughly characterized the obtained materials. Results from vibration spectroscopy, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), true density, specific surface area, and ion release studies have shown a difference in the physiochemical properties of the ACP and ACPC. Additionally, the effect of a carboxylic ion type on the physiochemical properties of ACPC was characterized. All of the ACPs and ACPCs were synthesized in sterile conditions, and in vitro analysis was performed using MC-3T3E1 cells, revealing the cytocompatibility of the synthesized ACPs and ACPCs, of which the ACPC synthesized with citrate showed the highest cell viability.

7.
J Biomol Struct Dyn ; : 1-10, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37418175

ABSTRACT

The functional domains of BARD1, comprise the Ankyrin Repeat Domain (ARD), C-Terminal domains (BRCTs), and a linker between ARD and the BRCTs, which are known to bind to Cleavage stimulation Factor complex-subunit of 50 kDa (CstF-50). The pathogenic mutation Q564H in the BARD1 ARD-linker-BRCT region has been reported to abrogate the binding between BARD1 and CstF-50. Intermediate penetrance variants of BARD1 are associated with the occurrence of breast cancer. Therefore, seven missense variants of unknown significance (VUS), L447V, P454L, N470S, V507M, I509T, C557S, and Q564H of BARD1, reported in the ARD domain and the linker region were evaluated via molecular dynamics (MD) simulations. The mutants revealed statistically significantly different distributions of RMSD (root mean square deviation), residuewise RMSF (root mean square fluctuation), Rg (radius of gyration), SASA (solvent accessible surface area), and COM (centre of mass)-to-COM distance between the ARD and the BRCT repeat, between the wild type and each mutant. The secondary structural composition of the mutants was slightly altered relative to that of the wild type. However, the reported in-silico based prediction require further validation using in-vitro, biophysical and structure-based approachCommunicated by Ramaswamy H. Sarma.

8.
Front Bioeng Biotechnol ; 11: 1150037, 2023.
Article in English | MEDLINE | ID: mdl-37091348

ABSTRACT

Bone is a composite material made up of inorganic and organic counterparts. Most of the inorganic counterpart accounts for calcium phosphate (CaP) whereas the major organic part is composed of collagen. The interfibrillar mineralization of collagen is an important step in the biomineralization of bone and tooth. Studies have shown that synthetic CaP undergoes auto-transformation to apatite nanocrystals before entering the gap zone of collagen. Also, the synthetic amorphous calcium phosphate/collagen combination alone is not capable of initiating apatite nucleation rapidly. Therefore, it was understood that there is the presence of a nucleation catalyst obstructing the auto-transformation of CaP before entering the collagen gap zone and initiating rapid nucleation after entering the collagen gap zone. Therefore, studies were focused on finding the nucleation catalyst responsible for the regulation of interfibrillar collagen mineralization. Organic macromolecules and low-molecular-weight carboxylic compounds are predominantly present in the bone and tooth. These organic compounds can interact with both apatite and collagen. Adsorption of the organic compounds on the apatite nanocrystal governs the nucleation, crystal growth, lattice orientation, particle size, and distribution. Additionally, they prevent the auto-transformation of CaP into apatite before entering the interfibrillar compartment of the collagen fibril. Therefore, many carboxylic organic compounds have been utilized in developing CaP. In this review, we have covered different carboxylate organic compounds governing collagen interfibrillar mineralization.

9.
PLoS One ; 18(4): e0284473, 2023.
Article in English | MEDLINE | ID: mdl-37058470

ABSTRACT

Composite asphalt binder has emerged as a potential solution for improving asphalt functionality at a wide spectrum of temperatures. Storage stability of modified binder remains a main concern to ensure homogeneity during various stages including its storage, pumping, transportation, and construction. The aim of this study was to assess the storage stability of composite asphalt binders fabricated using non-tire waste ethylene-propylene-diene-monomer (EPDM) rubber and waste plastic pyrolytic oil (PPO). The influence of addition of a crosslinking additive (sulfur) was also investigated. Two different approaches were employed in the fabrication of composite rubberized binders: (1) sequential introduction of PPO and rubber granules, and (2) inclusion of rubber granules pre-swelled with PPO at 90°C to the conventional binder. Based on the modified binder fabrication approaches and the addition of sulfur, four categories of modified binders were prepared, namely sequential (SA), sequential with sulfur (SA-S), pre-swelled (PA), and pre-swelled with sulfur (PA-S). For variable modifier dosages (EPDM:16%, PPO: 2, 4, 6, and 8%, and sulfur: 0.3%), a total of 17 combinations of rubberized asphalt were subjected to two durations of thermal storage (48 and 96 hours) and then characterized for their storage stability performance through various separation indices (SIs) based on conventional, chemical, microstructural, and rheological analyses. The optimal storage stability performance was achieved at a PPO dosage of 6% under the four candidate approaches. It was also observed that the SIs based on chemical analysis and rubber extraction test had a good correlation with rheology-based SIs compared to the conventionally used softening point difference. A composite modified binder with PPO and EPDM rubber having adequate storage stability is a promising step in the use of sustainable composite-modified binders in asphalt pavement construction.

10.
Pathogens ; 12(2)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36839449

ABSTRACT

BACKGROUND: Diopside-based ceramic is a perspective biocompatible material with numerous potential applications in the field of bone prosthetics. Implantable devices and materials are often prone to colonization and biofilm formation by pathogens such as Staphylococcus aureus, which in the case of bone grafting leads to osteomyelitis, an infectious bone and bone marrow injury. To lower the risk of bacterial colonization, implanted materials can be impregnated with antimicrobials. In this work, we loaded the antibacterial enzyme lysostaphin on diopside powder and studied the antibacterial and antibiofilm properties of such material to probe the utility of this approach for diopside-based prosthetic materials. METHODS: Diopside powder was synthesized by the solid-state method, lysostaphin was loaded on diopside by adsorption, the release of lysostaphin from diopside was monitored by ELISA, and antibacterial and anti-biofilm activity was assessed by standard microbiological procedures. RESULTS AND CONCLUSIONS: Lysostaphin released from diopside powder showed high antibacterial activity against planktonic bacteria and effectively destroyed 24-h staphylococcal biofilms. Diopside-based materials possess a potential for the development of antibacterial bone grafting materials.

11.
Biochemistry (Mosc) ; 87(11): 1277-1291, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36509727

ABSTRACT

Calcium-magnesium silicate ceramics, diopside, is a promising material for use in bone plastics, but until now the possibility of its use as a carrier of recombinant bone morphogenetic protein-2 (BMP-2) has not been studied, as well as the features of reparative osteogenesis mediated by the materials based on diopside with BMP-2. Powder of calcium-magnesium silicate ceramics was obtained by solid-state synthesis using biowaste - rice husks and egg shells - as source components. Main phase of the obtained ceramics was diopside. The obtained particles were irregularly shaped with an average size of about 2.3 µm and ~20% porosity; average pore size was about 24 nm, which allowed the material to be classified as mesoporous. Diopside powder adsorbs more than 150 µg of recombinant BMP-2 per milligram, which exceeds binding capacity of hydroxyapatite, a calcium-phosphate ceramic often used in hybrid implants, by more than 3 times. In vitro release kinetics of BMP-2 was characterized by a burst release in the first 2 days and a sustained release of approximately 0.4 to 0.5% of the loaded protein over the following 7 days. In vivo experiments were performed with a mouse model of cranial defects of critical size with implantation of a suspension of diopside powder with/without BMP-2 in hyaluronic acid incorporated into the disks of demineralized bone matrix with 73-90% volume porosity and macropore size from 50 to 650 µm. Dynamics of neoosteogenesis and bone tissue remodeling was investigated histologically at the time points of 12, 21, 48, and 63 days. Diopside particles were evenly spread in the matrix and caused minimal foreign body reaction. In the presence of BMP-2 by the day 63 significant foci of newly formed bone tissue were formed in the implant pores with bone marrow areas, moreover, large areas of demineralized bone matrix in the implant center and maternal bone at the edges were involved in the remodeling. Diopside could be considered as a promising material for introduction into hybrid implants as an effective carrier of BMP-2.


Subject(s)
Calcium , Magnesium , Mice , Animals , Bone Matrix , Bone Morphogenetic Protein 2 , Osteogenesis , Magnesium Silicates
12.
Polymers (Basel) ; 14(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36235880

ABSTRACT

The present work aimed to study the synergistic response of bioresorbable polylactide/bioactive wollastonite scaffolds towards mechanical stability, mesenchymal stromal cell colonization, and antibacterial activity in the physiological environment. Wollastonite was synthesized at 800 °C within 2 h by sol-gel combustion method. The surface area was found to be 1.51 m2/g, and Transmission Electron Microscopy (TEM) micrographs indicated the presence of porous structures. Fused deposition modeling was used to prepare 3D-printed polylactide/wollastonite and polylactide/hydroxyapatite scaffolds. Scanning Electron Microscopy (SEM) micrographs confirmed the interconnected porous structure and complex geometry of the scaffolds. The addition of wollastonite decreased the contact angle of the scaffolds. The mechanical testing of scaffolds examined by computational simulation, as well as machine testing, revealed their non-load-bearing capacity. The chemical constituent of the scaffolds was found to influence the attachment response of different cells on their surface. The incorporation of wollastonite effectively reduced live bacterial attachment, whereas the colonization of mesenchymal cells was improved. This observation confirms polylactide/wollastonite scaffold possesses both bactericidal as well as cytocompatible properties. Thus, the risk of peri-implant bacterial film formation can be prevented, and the biological fixation of the scaffold at the defect site can be enhanced by utilizing these composites.

13.
Materials (Basel) ; 14(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34683723

ABSTRACT

Calcium phosphate (CaP) biomaterials are extensively used to reconstruct bone defects. They resemble a chemical similarity to the inorganic mineral present in bones. Thus, they are termed as the key players in bone regeneration. Sintering is a heat treatment process applied to CaP powder compact or fabricated porous material to impart strength and integrity. Conventional sintering is the simplest sintering technique, but the processing of CaPs at a high temperature for a long time usually leads to the formation of secondary phases due to their thermal instability. Furthermore, it results in excessive grain growth that obstructs the densification process, limiting the application of CaP's ceramics in bone regeneration. This review focuses on advanced sintering techniques used for the densification of CaPs. These techniques utilize the synergy of temperature with one or more parameters such as external pressure, electromagnetic radiation, electric current, or the incorporation of transient liquid that boosts the mass transfer while lowering the sintering temperature and time.

14.
PLoS One ; 16(8): e0256030, 2021.
Article in English | MEDLINE | ID: mdl-34411159

ABSTRACT

Globally, the growing volume of waste tires and plastics has posed significant concerns about their sustainable and economical disposal. Pyrolysis provides a way for effective treatment and management of these wastes, enabling recovery of energy and produces solid pyrolytic char as a by-product. The use of pyrolytic chars in asphalt binder modification has recently gained significant interest among researchers. As asphalt binder aging influences the cracking, rutting, and moisture damage performance of asphalt binder and the mixtures, evaluation of aging characteristics of char modified asphalt binders is quite important. The main objective of this study is the investigation of the aging characteristics of asphalt binders modified with waste tire pyrolytic char (TPC) and waste plastic pyrolytic char (PPC) through rheological and spectroscopic evaluations. To imitate short-term and long-term aging conditions, the asphalt binders were first treated in a rolling thin film oven (RTFO) and then in a pressure aging vessel (PAV). The aging characteristics were determined using four rheological aging indices based on complex modulus (G*), phase angle (δ), zero shear viscosity (ZSV), and non-recoverable creep compliance (Jnr) from multiple stress creep and recovery (MSCR) test. The fatigue cracking potential was then measured through binder yield energy test (BYET). These parameters were measured through a dynamic shear rheometer. Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy analyses were then used to investigate changes in chemical composition due to aging in the char modified binders. Both TPC and PPC improved the high-temperature deformation resistance properties of asphalt binder. The TPC-modified binder showed better aging resistance than the control and PPC-modified binders, based on the different rheological and spectroscopic indices. The pyrolytic char modified binders also demonstrated good fatigue performance.


Subject(s)
Hydrocarbons/chemistry , Recycling/methods , Waste Management/methods , Plastics/analysis , Plastics/chemistry , Pyrolysis , Rheology/methods , Viscosity , Waste Products/analysis , Waste Products/economics
15.
Polymers (Basel) ; 13(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808492

ABSTRACT

Tissue engineering (TE) and regenerative medicine integrate information and technology from various fields to restore/replace tissues and damaged organs for medical treatments. To achieve this, scaffolds act as delivery vectors or as cellular systems for drugs and cells; thereby, cellular material is able to colonize host cells sufficiently to meet up the requirements of regeneration and repair. This process is multi-stage and requires the development of various components to create the desired neo-tissue or organ. In several current TE strategies, biomaterials are essential components. While several polymers are established for their use as biomaterials, careful consideration of the cellular environment and interactions needed is required in selecting a polymer for a given application. Depending on this, scaffold materials can be of natural or synthetic origin, degradable or nondegradable. In this review, an overview of various natural and synthetic polymers and their possible composite scaffolds with their physicochemical properties including biocompatibility, biodegradability, morphology, mechanical strength, pore size, and porosity are discussed. The scaffolds fabrication techniques and a few commercially available biopolymers are also tabulated.

16.
PLoS One ; 16(3): e0248465, 2021.
Article in English | MEDLINE | ID: mdl-33720964

ABSTRACT

Pyrolysis has gained a strong interest in recent times for sustainable treatment and recovery of energy-rich products from different wastes including plastic. Waste plastic pyrolytic char (PPC) generated as a carbonaceous by-product in the pyrolysis process, is gaining attention as an asphalt binder modifier. Adequate thermal storage stability is an essential requirement for a modified asphalt binder to ensure that the composite offers integrity and homogeneous properties during its storage, handling and transportation in the field. The objective of this study was to evaluate and characterize the thermal storage stability properties of PPC modified binders. PPC modified asphalt binders were fabricated and evaluated at multiple dosages of sulfur as a cross-linking agent. In addition to the conventionally used softening point difference (SPD), characterization of thermal storage stability was attempted using rheology-based separation indices (SIs) derived through temperature sweep, frequency sweep, and multiple stress creep and recovery (MSCR) tests. These rheological SIs were based on complex modulus (G*), Superpave rutting parameter (G*/sin δ), Shenoy rutting parameter (SRP), zero shear viscosity (ZSV), and MSCR Jnr (at three stress levels 0.1, 3.2 and 10 kPa). Two formulations of each rheology-based separation index were studied: (1) ratio, and (2) maximum-average difference formulations. The temperature and frequency dependencies of rheological SIs were also evaluated. Further, the Fourier transform infrared spectroscopy (FTIR) was used to characterize storage stability by comparing the chemical functionalities of the PPC modified binders. A 0.3% dosage of sulfur was found to produce the best results considering all SPD, rheology-based SIs and FTIR. Principal component analysis showed that the ratio and maximum-average formulations had similar contributions to the first principal component accounting for more than 99% of the variability.


Subject(s)
Hydrocarbons/chemistry , Plastics/chemistry , Sulfur/chemistry , Pyrolysis , Viscosity
17.
Mater Sci Eng C Mater Biol Appl ; 118: 111456, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33255041

ABSTRACT

The current investigation aims to replace the synthetic starting materials with biowaste to synthesize and explore three different silicate bioceramics. Pure silica from rice husk was extracted by decomposition of rice husk in muffle furnace followed by alkali treatment and acid precipitation. Raw eggshell and extracted silica were utilized for the preparation of wollastonite, diopside and forsterite by the solid-state method. The TG-DSC analysis shows that the crystallization temperature of wollastonite, diopside and forsterite was found to be 883 °C, 870 °C and 980 °C, respectively. The phase purity of wollastonite was attained at 1100 °C whereas diopside and forsterite were composed of secondary phases even after calcination at 1250 °C and 1300 °C respectively. All three materials behaved differently when exposed to the physiological environment, as wollastonite exhibited remarkable apatite deposition within 3 days whereas a distinct apatite phase was noticed on the surface of diopside after 2 weeks and forsterite shows the formation of apatite phase after five weeks of immersion. The rapid dissolution of Mg2+ ion from forsterite lowered the leaching of silicate ions into the simulated body fluid leading to poor apatite deposition over its surface. Chemical composition was found to plays a key role in the biomineralization ability of these bioceramics. Hemolysis and Lactate Dehydrogenase (LDH) release assays were performed to evaluate the hemocompatibility of silicate ceramics cultured at different concentrations (62.5, 125, and 250 µg/mL) with red blood cells and mononuclear leucocytes (MLs) of mice. The hemolytic activity of all the tested bioceramics was insignificant (less than 1%). The interaction between diopside and mouse multipotent mesenchymal stromal cells (MMSCs) caused a negligible increase in the number of apoptosis-associated Annexin V-binding cells whereas forsterite and wollastonite induced an increase in the number of the apoptotic cells only at the concentration of 250 µg/mL. The LDH assay did not show statistically significant changes in the proliferation of MMSCs after treatment with the bioceramics at the tested concentrations when compared to control (p > 0.05). This finding showed that the death of a part of cells during the first 24 h of incubation did not prevent the proliferation of MMSCs incubated with diopside, forsterite and wollastonite for 72 h.


Subject(s)
Oryza , Animals , Biomineralization , Ceramics , Egg Shell , Mice , Silicates , Solubility
18.
Mater Sci Eng C Mater Biol Appl ; 118: 111466, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33255048

ABSTRACT

This work is aimed to develop a biocompatible, bactericidal and mechanically stable biomaterial to overcome the challenges associated with calcium phosphate bioceramics. The influence of chemical composition on synthesis temperature, bioactivity, antibacterial activity and mechanical stability of least explored calcium silicate bioceramics was studied. The current study also investigates the biomedical applications of rankinite (Ca3Si2O7) for the first time. Sol-gel combustion method was employed for their preparation using citric acid as a fuel. Differential thermal analysis indicated that the crystallization of larnite and rankinite occurred at 795 °C and 1000 °C respectively. The transformation of secondary phases into the desired product was confirmed by XRD and FT-IR. TEM micrographs showed the particle size of larnite in the range of 100-200 nm. The surface of the samples was entirely covered by the dominant apatite phase within one week of immersion. Moreover, the compressive strength of larnite and rankinite was found to be 143 MPa and 233 MPa even after 28 days of soaking in SBF. Both samples prevented the growth of clinical pathogens at a concentration of 2 mg/mL. Larnite and rankinite supported the adhesion, proliferation and osteogenic differentiation of hBMSCs. The variation in chemical composition was found to influence the properties of larnite and rankinite. The results observed in this work signify that these materials not only exhibit faster biomineralization ability, excellent cytocompatibility but also enhanced mechanical stability and antibacterial properties.


Subject(s)
Biomineralization , Osteogenesis , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Calcium Compounds , Materials Testing , Silicates , Spectroscopy, Fourier Transform Infrared
19.
Polymers (Basel) ; 12(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33316955

ABSTRACT

The major problem in bone tissue engineering is the development of scaffolds which can simultaneously meet the requirements of porous structure, as well as have the ability to guide the regeneration of damaged tissue by biological fixation. Composites containing biodegradable matrix and bioactive filler are the new hope in this research field. Herein we employed a simple and facile solvent casting particulate-leaching method for producing polylactide acid/hydroxyapatite (PLA/HA) composites at room temperature. FT-IR analysis confirmed the existence of necessary functional groups associated with the PLA/HA composite, whereas energy-dispersive X-ray (EDX) spectra indicated the uniform distribution of hydroxyapatite particles in the polymer matrix. The beehive-like surface morphology of the composites revealed the presence of macropores, ranged from 300 to 400 µm, whereas the thickness of the pores was noticed to be 1-2 µm. The total porosity of the scaffolds, calculated by hydrostatic weighing, was found to be 79%. The water contact angle of pure PLA was decreased from 83.6 ± 1.91° to 62.4 ± 4.17° due to the addition of hydroxyapatite in the polymer matrix. Thus, the wettability of the polymeric biomaterial could be increased by preparing their composites with hydroxyapatite. The adhesion of multipotent mesenchymal stromal cells over the surface of PLA/HA scaffolds was 3.2 times (p = 0.03) higher than the pure PLA sample. Subcutaneous implantation in mice demonstrated a good tolerance of all tested porous scaffolds and widespread ingrowth of tissue into the implant pores. HA-containing scaffolds showed a less pronounced inflammatory response after two weeks of implantation compared to pure PLA. These observations suggest that PLA/HA composites have enormous potential for hard tissue engineering and restoring maxillofacial defects.

20.
J Biomol Struct Dyn ; 38(1): 114-123, 2020 01.
Article in English | MEDLINE | ID: mdl-30688163

ABSTRACT

Deinococcus RecA (DrRecA) protein is a key repair enzyme and contributes to efficient DNA repair of Deinococcus radiodurans. Phosphorylation of DrRecA at Y77 (tyrosine 77) and T318 (threonine 318) residues modifies the structural and conformational switching that impart the efficiency and activity of DrRecA. Dynamics comparisons of DrRecA with its phosphorylated analogues support the idea that phosphorylation of Y77 and T318 sites could change the dynamics and conformation plasticity of DrRecA. Furthermore, docking studies showed that phosphorylation increases the binding preference of DrRecA towards dATP versus ATP and for double-strand DNA versus single-strand DNA. This work supporting the idea that phosphorylation can modulate the crucial functions of this protein and having good concordance with the experimental data. AbbreviationsDrRecADeinococcus RecADSBDNA double-strand breakshDNAheteroduplex DNASTYPKserine/threonine/tyrosine protein kinaseT318threonine 318Y77tyrosine 77Communicated by Ramaswamy H. Sarma.


Subject(s)
Deinococcus/enzymology , Deinococcus/radiation effects , Radiation Tolerance , Rec A Recombinases/chemistry , Rec A Recombinases/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , DNA Damage , DNA Repair , DNA, Single-Stranded , Models, Molecular , Phosphorylation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...