Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 41(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38606901

ABSTRACT

Y chromosomes are thought to undergo progressive degeneration due to stepwise loss of recombination and subsequent reduction in selection efficiency. However, the timescales and evolutionary forces driving degeneration remain unclear. To investigate the evolution of sex chromosomes on multiple timescales, we generated a high-quality phased genome assembly of the massive older (<10 MYA) and neo (<200,000 yr) sex chromosomes in the XYY cytotype of the dioecious plant Rumex hastatulus and a hermaphroditic outgroup Rumex salicifolius. Our assemblies, supported by fluorescence in situ hybridization, confirmed that the neo-sex chromosomes were formed by two key events: an X-autosome fusion and a reciprocal translocation between the homologous autosome and the Y chromosome. The enormous sex-linked regions of the X (296 Mb) and two Y chromosomes (503 Mb) both evolved from large repeat-rich genomic regions with low recombination; however, the complete loss of recombination on the Y still led to over 30% gene loss and major rearrangements. In the older sex-linked region, there has been a significant increase in transposable element abundance, even into and near genes. In the neo-sex-linked regions, we observed evidence of extensive rearrangements without gene degeneration and loss. Overall, we inferred significant degeneration during the first 10 million years of Y chromosome evolution but not on very short timescales. Our results indicate that even when sex chromosomes emerge from repetitive regions of already-low recombination, the complete loss of recombination on the Y chromosome still leads to a substantial increase in repetitive element content and gene degeneration.


Subject(s)
Chromosomes, Plant , Evolution, Molecular , Genome, Plant , Rumex , Rumex/genetics , Sex Chromosomes/genetics , Recombination, Genetic , In Situ Hybridization, Fluorescence
2.
Philos Trans R Soc Lond B Biol Sci ; 377(1850): 20210226, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35306892

ABSTRACT

There is growing evidence from diverse taxa for sex differences in the genomic landscape of recombination, but the causes and consequences of these differences remain poorly understood. Strong recombination landscape dimorphism between the sexes could have important implications for the dynamics of sex chromosome evolution because low recombination in the heterogametic sex can favour the spread of sexually antagonistic alleles. Here, we present a sex-specific linkage map and revised genome assembly of Rumex hastatulus and provide the first evidence and characterization of sex differences in recombination landscape in a dioecious plant. We present data on significant sex differences in recombination, with regions of very low recombination in males covering over half of the genome. This pattern is evident on both sex chromosomes and autosomes, suggesting that pre-existing differences in recombination may have contributed to sex chromosome formation and divergence. Our analysis of segregation distortion suggests that haploid selection due to pollen competition occurs disproportionately in regions with low male recombination. We hypothesize that sex differences in the recombination landscape have contributed to the formation of a large heteromorphic pair of sex chromosomes in R. hastatulus, but more comparative analyses of recombination will be important to investigate this hypothesis further. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.


Subject(s)
Rumex , Chromosomes, Plant/genetics , Plants/genetics , Recombination, Genetic , Rumex/genetics , Sex Characteristics , Sex Chromosomes/genetics
3.
Mol Biol Evol ; 38(3): 1018-1030, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33095227

ABSTRACT

Classical models suggest that recombination rates on sex chromosomes evolve in a stepwise manner to localize sexually antagonistic variants in the sex in which they are beneficial, thereby lowering rates of recombination between X and Y chromosomes. However, it is also possible that sex chromosome formation occurs in regions with preexisting recombination suppression. To evaluate these possibilities, we constructed linkage maps and a chromosome-scale genome assembly for the dioecious plant Rumex hastatulus. This species has a polymorphic karyotype with a young neo-sex chromosome, resulting from a Robertsonian fusion between the X chromosome and an autosome, in part of its geographic range. We identified the shared and neo-sex chromosomes using comparative genetic maps of the two cytotypes. We found that sex-linked regions of both the ancestral and the neo-sex chromosomes are embedded in large regions of low recombination. Furthermore, our comparison of the recombination landscape of the neo-sex chromosome to its autosomal homolog indicates that low recombination rates mainly preceded sex linkage. These patterns are not unique to the sex chromosomes; all chromosomes were characterized by massive regions of suppressed recombination spanning most of each chromosome. This represents an extreme case of the periphery-biased recombination seen in other systems with large chromosomes. Across all chromosomes, gene and repetitive sequence density correlated with recombination rate, with patterns of variation differing by repetitive element type. Our findings suggest that ancestrally low rates of recombination may facilitate the formation and subsequent evolution of heteromorphic sex chromosomes.


Subject(s)
Biological Evolution , Chromosomes, Plant , Recombination, Genetic , Rumex/genetics , Sex Chromosomes , Genome, Plant
5.
Trends Microbiol ; 26(8): 692-702, 2018 08.
Article in English | MEDLINE | ID: mdl-29395731

ABSTRACT

The Gal4 transcription factor (TF) controls gene expression by binding the DNA sequence motif CGG(N11)CCG. Well studied versions regulate metabolism of glucose in Candida albicans and galactose in Saccharomyces cerevisiae. Gal4 is also found within Aspergillus species and shows a wide range of potential binding targets. Members of the CTG clade that reassigned CUG codons from leucine to serine lack the Gal80 binding domain of Gal4, and they use the TF to regulate only glycolytic genes. In this clade, the galactose catabolic pathway (also known as the Leloir pathway) genes are regulated by Rtg1/Rtg3. In the WGD species, the complete Gal4/Gal80 module is limited to regulation of the Leloir pathway, while glycolysis is controlled by Gcr1/Gcr2. This shows a switch of Gal4 from a generalist to a specialist within the ascomycetes, and the split of glucose and galactose metabolism into distinct regulatory circuits.


Subject(s)
Candida albicans/metabolism , DNA-Binding Proteins/genetics , Galactose/metabolism , Gene Expression Regulation, Fungal/genetics , Glucose/metabolism , Glycolysis/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factors/genetics , Amino Acid Sequence , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Candida albicans/genetics , DNA-Binding Proteins/metabolism , Glycolysis/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
6.
Article in English | MEDLINE | ID: mdl-29203491

ABSTRACT

There is currently a small number of classes of antifungal drugs, and these drugs are known to target a very limited set of cellular functions. We derived a set of approximately 900 nonessential, transactivator-defective disruption strains from the tetracycline-regulated GRACE collection of strains of the fungal pathogen Candida albicans This strain set was screened against classic antifungal drugs to identify gene inactivations that conferred either enhanced sensitivity or increased resistance to the compounds. We examined two azoles, fluconazole and posaconazole; two echinocandins, caspofungin and anidulafungin; and a polyene, amphotericin B. Overall, the chemogenomic profiles within drug classes were highly similar, but there was little overlap between classes, suggesting that the different drug classes interacted with discrete networks of genes in C. albicans We also tested two pyridine amides, designated GPI-LY7 and GPI-C107; these drugs gave very similar profiles that were distinct from those of the echinocandins, azoles, or polyenes, supporting the idea that they target a distinct cellular function. Intriguingly, in cases where these gene sets can be compared to genetic disruptions conferring drug sensitivity in other fungi, we find very little correspondence in genes. Thus, even though the drug targets are the same in the different species, the specific genetic profiles that can lead to drug sensitivity are distinct. This implies that chemogenomic screens of one organism may be poorly predictive of the profiles found in other organisms and that drug sensitivity and resistance profiles can differ significantly among organisms even when the apparent target of the drug is the same.

7.
Curr Biol ; 26(13): 1677-1687, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27321996

ABSTRACT

Metabolic pathways are largely conserved in eukaryotes, but the transcriptional regulation of these pathways can sometimes vary between species; this has been termed "rewiring." Recently, it has been established that in the Saccharomyces lineage starting from Naumovozyma castellii, genes involved in allantoin breakdown have been genomically relocated to form the DAL cluster. The formation of the DAL cluster occurred along with the loss of urate permease (UAP) and urate oxidase (UOX), reducing the requirement for oxygen and bypassing the candidate Ppr1 inducer, uric acid. In Saccharomyces cerevisiae, this allantoin catabolism cluster is regulated by the transcription factor Dal82, which is not present in many of the pre-rearrangement fungal species. We have used ChIP-chip analysis, transcriptional profiling of an activated Ppr1 protein, bioinformatics, and nitrogen utilization studies to establish that in Candida albicans the zinc cluster transcription factor Ppr1 controls this allantoin catabolism regulon. Intriguingly, in S. cerevisiae, the Ppr1 ortholog binds the same DNA motif (CGG(N6)CCG) as in C. albicans but serves as a regulator of pyrimidine biosynthesis. This transcription factor rewiring appears to have taken place at the same phylogenetic step as the formation of the rearranged DAL cluster. This transfer of the control of allantoin degradation from Ppr1 to Dal82, together with the repositioning of Ppr1 to the regulation of pyrimidine biosynthesis, may have resulted from a switch to a metabolism that could exploit hypoxic conditions in the lineage leading to N. castellii and S. cerevisiae.


Subject(s)
Fungal Proteins/genetics , Purines/metabolism , Pyrimidines/biosynthesis , Saccharomycetales/genetics , Transcription Factors/genetics , Allantoin/metabolism , Candida albicans/genetics , Candida albicans/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Saccharomycetales/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism , Zinc Fingers
8.
Trends Genet ; 31(8): 445-53, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26051071

ABSTRACT

The related yeasts Saccharomyces cerevisiae and Candida albicans have similar genomes but very different lifestyles. These fungi have modified transcriptional and post-translational regulatory processes to adapt their similar genomes to the distinct biological requirements of the two yeasts. We review recent findings comparing the differences between these species, highlighting how they have achieved specialized metabolic capacities tailored to their lifestyles despite sharing similar genomes. Studying this transcriptional and post-transcriptional rewiring may improve our ability to interpret phenotype from genotype.


Subject(s)
Ascomycota/genetics , Ascomycota/metabolism , Genome, Fungal , Carbon/metabolism , Models, Genetic , Multiprotein Complexes/metabolism , Transcription, Genetic
9.
BMC Res Notes ; 7: 953, 2014 Dec 29.
Article in English | MEDLINE | ID: mdl-25547027

ABSTRACT

BACKGROUND: Indigenous rice varieties in the Eastern Himalayan region of Northeast India are traditionally classified into sali, boro and jum ecotypes based on geographical locality and the season of cultivation. In this study, we used DNA sequence data from the Waxy (Wx) gene to infer the genetic relatedness among indigenous rice varieties in Northeast India and to assess the genetic distinctiveness of ecotypes. FINDINGS: The results of all three analyses (Bayesian, Maximum Parsimony and Neighbor Joining) were congruent and revealed two genetically distinct clusters of rice varieties in the region. The large group comprised several varieties of sali and boro ecotypes, and all agronomically improved varieties. The small group consisted of only traditionally cultivated indigenous rice varieties, which included one boro, few sali and all jum varieties. The fixation index analysis revealed a very low level of differentiation between sali and boro (F(ST) = 0.005), moderate differentiation between sali and jum (F(ST) = 0.108) and high differentiation between jum and boro (F(ST) = 0.230) ecotypes. CONCLUSION: The genetic relatedness analyses revealed that sali, boro and jum ecotypes are genetically heterogeneous, and the current classification based on cultivation type is not congruent with the genetic background of rice varieties. Indigenous rice varieties chosen from genetically distinct clusters could be used in breeding programs to improve genetic gain through heterosis, while maintaining high genetic diversity.


Subject(s)
DNA, Plant/genetics , Genetic Variation , Oryza/genetics , Plant Proteins/genetics , Starch Synthase/genetics , Base Sequence , Bayes Theorem , DNA, Plant/chemistry , Geography , Haplotypes , India , Markov Chains , Molecular Sequence Data , Monte Carlo Method , Oryza/classification , Phylogeny , Plant Proteins/classification , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Starch Synthase/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...