Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 13(10)2023 10 14.
Article in English | MEDLINE | ID: mdl-37892206

ABSTRACT

The COVID-19 pandemic has had a significant impact on human health management. A rapid diagnosis of SARS-CoV2 at the point-of-care (POC) is critical to prevent disease spread. As a POC device for remote settings, a LFIA should not require cold-chain maintenance and should be kept at normal temperatures. Antigen stability can be enhanced by addressing instability issues when dealing with fragile components, such as proteinaceous capture antigens. This study used immunologically guided protein engineering to enhance the capture nucleocapsid (NP) antigen stability of SARS-CoV2. A search of the IEDB database revealed that antibodies detecting epitopes are almost uniformly distributed over NP1-419. In contrast, N-terminal stretches of NP1-419 are theoretically more unstable than C-terminal stretches. We identified NP250-365 as a NP stretch with a low instability index and B-cell epitopes. Apart from NP1-419, two other variants (NP121-419 and NP250-365) were cloned, expressed, and purified. The degradation pattern of the proteins was observed on SDS-PAGE after three days of stability studies at -20 °C, 4 °C, and 37 °C. NP1-419 was the most degraded while NP250-365 exhibited the least degradation. Also, NP1-419, NP250-365, and NP121-419 reacted with purified antibodies from COVID-19 patient serum. Our results suggest that NP250-365 may be used as a stable capture antigen in LFIA devices to detect COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , RNA, Viral , SARS-CoV-2/genetics , Pandemics , Antigens , Nucleocapsid , COVID-19 Testing
2.
J Biotechnol ; 310: 68-79, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32014561

ABSTRACT

Chaperones are a diverse class of molecules known for increasing thermo-stability of proteins, preventing protein aggregation, favoring disaggregation, increasing solubility and in some cases imparting resistance to proteolysis. These functions can be employed for various biotechnological applications including point of care testing, nano-biotechnology, bio-process engineering, purification technologies and formulation development. Here we report that the N-terminal domain of Pyrococcus furiosusl-asparaginase, (NPfA, a protein chaperone lacking α-crystallin domain) can serve as an efficient, industrially relevant, protein additive. We tested the effect of NPfA on substrate proteins, ascorbate peroxidase (APX), IgG peroxidase antibodies (I-HAbs) and KOD DNA polymerase. Each protein not only displayed increased thermal stability but also increased activity in the presence of NPfA. This increase was either comparable or higher than those obtained by common osmolytes; glycine betaine, sorbitol and trehalose. Most dramatic activity enhancement was seen in the case of KOD polymerase (∼ 40 % increase). NPfA exerts its effect through transient binding to the substrate proteins as discerned through isothermal titration calorimetry, dynamic light scattering and size exclusion chromatography. Mechanistic insights obtained through simulations suggested a remodeled architecture and emergence of H-binding network between NPfA and substrate protein with an effective enhancement in the solvent accessibility at the active site pocket of the latter. Thus, the capability of NPfA to engage in specific manner with other proteins is demonstrated to reduce the concentration of substrate proteins/enzymes required per unit operation. The functional expansion obtained through our finding establishes NPfA as a novel class of ATP-independent molecular chaperone with immense future biotechnological applications.


Subject(s)
Archaeal Proteins/chemistry , Asparaginase/chemistry , Molecular Chaperones/chemistry , Pyrococcus furiosus/chemistry , Archaeal Proteins/genetics , Asparaginase/genetics , Molecular Chaperones/genetics , Plasmodium falciparum/chemistry , Plasmodium falciparum/genetics , Protein Domains , Protein Stability , Pyrococcus furiosus/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Thermococcus/chemistry , Thermococcus/genetics
3.
Int J Biol Macromol ; 107(Pt B): 2086-2093, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29042276

ABSTRACT

Heat shock proteins (HSPs) are known to confer protection to the stressed cells by rescuing vital host cell proteins. In the present study we have demonstrated that heterologous expression of N-terminal domain of hyperthermophilic L-asparaginase (NPfA) confers thermotolerance to E. coli. The recombinant expression of NPfA enabled E. coli to demonstrate typical growth behavior at 52°C and survive a thermal shock up to 62°C, both being the highest reported temperatures for growth and heat shock survival. To understand the basis of protection proteome analysis of these cells was carried out which showed that NPfA guards a battery of proteins, especially related to gene regulations and repair, providing definite survival advantage to the stressed cells. Thus NPfA a non-canonical, non-natural chaperone has been shown to render E. coli cells with selective growth advantage under extremes of conditions. We propose that such modified, heat stabilized hosts could be utilized in developing heat-induced expression systems as well for the recombinant expression of thermophilic proteins.


Subject(s)
Asparaginase/chemistry , Escherichia coli/physiology , Molecular Chaperones/chemistry , Protein Engineering/methods , Thermotolerance/physiology , DNA Repair , Enzyme Stability , Escherichia coli/growth & development , Heat-Shock Response , Microbial Viability , Microscopy, Atomic Force , Protein Domains , Pyrococcus/enzymology , Solubility , Stress, Physiological , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...