Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(2)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36837646

ABSTRACT

Pressure-based membrane processes represent excellent water resource recovery prospects from industrial waste streams. In contrast with conventional pretreatment technologies, studies have shown that membrane pretreatment applications, such as microfiltration (MF), are more cost-effective and improve the results of the overall treatment processes. Hence, enhancing rejection efficiency of MF will enhance the performance of any downstream treatment processes. In this study, 0.45 µm cellulose acetate (CA) microfiltration membranes were modified by vacuum filtration-assisted layer-by-layer deposition of bilayers composed of negatively charged graphene oxide (GO) and positively charged polyethyleneimine (PEI). The performance of 1-, 2-, and 4-bilayer GO-PEI-modified membranes were investigated for their dye-rejection of anionic eriochrome black T (EBT) dye and cationic methylene blue (MB) dye in a cross-flow membrane module. As the number of bilayers on the membrane increased, the membrane thicknesses increased, and the deionized (DI) water flux through the membranes decreased from 4877 LMH/bar for the control (no bilayer) membrane to 2890 LMH/bar for the 4-bilayer membrane. Conversely, the dye-rejection performance of the modified membranes increased as increasing bilayers of GO-PEI deposited on the membranes. The anionic EBT dye saw superior rejection (~90% rejection) compared to the cationic MB dye (~80% rejection), which can be attributable to the electrostatic repulsion between the negatively charged GO surface and anionic EBT dye. After 50% recovery of the saline and dye-laden feed water, there was an observed drop in DI water fluxes of ~40-41% and 36%, respectively. There was also a slight increase in EBT dye-rejection during the composite feed-water experiments, attributed to the precipitation of salts on the membrane feed side or pore spaces, which subsequently reduce the membrane pore sizes.

2.
J Environ Manage ; 311: 114761, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35276557

ABSTRACT

This study evaluated the performance of an integrated electrochemical process, which simultaneously utilizes electro-oxidation (EO) and electro-coagulation (EC) methods while removing organic and nitrogen loads from high-strength leachate obtained from anaerobic digesters. A bipolar arrangement of the aluminum electrode, sandwiched between a monopolar boron-doped diamond anode and stainless-steel cathode, integrates EC and EO into a single reactor. This arrangement demonstrated an enhancement of 33%, 27%, and 24% in removal capacity for ammonia nitrogen (AN), total Kjeldahl nitrogen (TKN), and total nitrogen, respectively, when compared to just EO at 0.8 A current intensity after 24 h. Increasing the current intensity from 0.4 A to 1.0 A enhanced the organic nitrogen and AN removal. Chemical oxygen demand (COD) exhibited initial faster removal kinetics with higher current intensities and eventually reached 95%-98% removal for intensities of 0.6 A or higher. Additional removal for AN, TKN were also observed with increasing current intensity. Lowering the pH further expedited the COD removal kinetics. Reducing and maintaining the pH at 4, 6, and 8 by dosing of hydrochloric acid (HCl) resulted in the 100% removal of AN and TKN from the integrated system in 6, 8, and 20 h, respectively. Accelerated removal of COD and the enhanced removal of AN and TKN through pH control could be linked to the formation of active chlorine species in bulk solution. The integrated system offered lower energy consumption than EO due to oxidation on the additional anodic surface of the bipolar electrode, as well as the adsorption-precipitation of contaminants in aluminum flocs.

3.
Environ Res ; 183: 109273, 2020 04.
Article in English | MEDLINE | ID: mdl-32105886

ABSTRACT

Developing cost-effective technology for treatment of sewage and nitrogen-containing groundwater is one of the crucial challenges of global water industries. Microbial fuel cells (MFCs) oxidize organics from sewage by exoelectrogens on anode to produce electricity while denitrifiers on cathode utilize the generated electricity to reduce nitrogen from contaminated groundwater. As the exoelectrogens are incapable of oxidizing insoluble, polymeric, and complex organics, a novel integration of an anaerobic sequencing batch reactor (ASBR) prior to the MFC simultaneously achieve hydrolytic-acidogenic conversion of complex organics, boost power recovery, and remove Carbon/Nitrogen (C/N) from the sewage and groundwater. The results obtained revealed increases in the fractions of soluble organics and volatile fatty acids in pretreated sewage by 52 ± 19% and 120 ± 40%, respectively. The optimum power and current generation with the pretreated sewage were 7.1 W m-3 and 45.88 A m-3, respectively, corresponding to 8% and 10% improvements compared to untreated sewage. Moreover, the integration of the ASBR with the biocathode MFC led to 217% higher carbon and 136% higher nitrogen removal efficiencies compared to the similar system without ASBR. The outcomes of the present study represent the promising prospects of using ASBR pretreatment and successive utilization of solubilized organics in denitrifying biocathode MFCs for simultaneous energy recovery and C/N removal from both sewage and nitrate nitrogen-contaminated groundwater.


Subject(s)
Bioelectric Energy Sources , Bioreactors , Groundwater , Sewage , Carbon , Denitrification , Electricity , Nitrogen , Waste Disposal, Fluid
4.
Adv Colloid Interface Sci ; 269: 370-399, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31129338

ABSTRACT

Fouling and wetting of membranes are significant concerns that can impede the widespread application of the membrane distillation (MD) process during high-salinity wastewater reclamation. Fouling, caused by the accumulation of undesirable materials on the membrane surface and pores, causes a decrease in permeate flux. Membrane wetting, the direct permeation of the feed solution through the membrane pores, results in reduced contaminant rejection and overall process failure. Lately, the application of MD for water recovery from various types of wastewaters has gained increased attention among researchers. In this review, we discuss fouling and wetting phenomena observed during the MD process, along with the effects of various mitigation strategies. In addition, we examine the interactions between contaminants and different types of MD membranes and the influence of different operating conditions on the occurrence of fouling and wetting. We also report on previously investigated feed pre-treatment options before MD, application of integrated MD processes, the performance of fabricated/modified MD membranes, and strategies for MD membrane maintenance during water reclamation. Energy consumption and economic aspects of MD for wastewater recovery is also discussed. Throughout the review, we engage in dialogues highlighting research needs for furthering the development of MD: the incorporation of MD in the overall wastewater treatment and recovery scheme (including selection of appropriate membrane material, suitable pre-treatment or integrated processes, and membrane maintenance strategies) and the application of MD in long-term pilot-scale studies using real wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL
...