Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Virol ; 91(22)2017 11 15.
Article in English | MEDLINE | ID: mdl-28878073

ABSTRACT

Within infected host cells, mammalian orthoreovirus (MRV) forms viral factories (VFs), which are sites of viral transcription, translation, assembly, and replication. The MRV nonstructural protein µNS comprises the structural matrix of VFs and is involved in recruiting other viral proteins to VF structures. Previous attempts have been made to visualize VF dynamics in live cells, but due to current limitations in recovery of replicating reoviruses carrying large fluorescent protein tags, researchers have been unable to directly assess VF dynamics from virus-produced µNS. We set out to develop a method to overcome this obstacle by utilizing the 6-amino-acid (CCPGCC) tetracysteine (TC) tag and FlAsH-EDT2 reagent. The TC tag was introduced into eight sites throughout µNS, and the capacity of the TC-µNS fusion proteins to form virus factory-like (VFL) structures and colocalize with virus proteins was characterized. Insertion of the TC tag interfered with recombinant virus rescue in six of the eight mutants, likely as a result of loss of VF formation or important virus protein interactions. However, two recombinant (r)TC-µNS viruses were rescued and VF formation, colocalization with associating virus proteins, and characterization of virus replication were subsequently examined. Furthermore, the rTC-µNS viruses were utilized to infect cells and examine VF dynamics using live-cell microscopy. These experiments demonstrate active VF movement with fusion events as well as transient interactions between individual VFs and demonstrate the importance of microtubule stability for VF fusion during MRV infection. This work provides important groundwork for future in-depth studies of VF dynamics and host cell interactions.IMPORTANCE MRV has historically been used as a model to study the double-stranded RNA (dsRNA) Reoviridae family, the members of which infect and cause disease in humans, animals, and plants. During infection, MRV forms VFs that play a critical role in virus infection but remain to be fully characterized. To study VFs, researchers have focused on visualizing the nonstructural protein µNS, which forms the VF matrix. This work provides the first evidence of recovery of replicating reoviruses in which VFs can be labeled in live cells via introduction of a TC tag into the µNS open reading frame. Characterization of each recombinant reovirus sheds light on µNS interactions with viral proteins. Moreover, utilizing the TC-labeling FlAsH-EDT2 biarsenical reagent to visualize VFs, evidence is provided of dynamic VF movement and interactions at least partially dependent on intact microtubules.


Subject(s)
Capsid Proteins/metabolism , Exosomes/virology , Orthoreovirus, Mammalian/physiology , RNA, Viral/metabolism , Virus Replication/physiology , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Viral/chemistry , Capsid Proteins/genetics , Cell Line , Exosomes/genetics , Exosomes/metabolism , Humans , RNA, Viral/genetics
2.
J Virol ; 91(21)2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28794026

ABSTRACT

Mammalian orthoreovirus (MRV) infection induces phosphorylation of translation initiation factor eIF2α, which promotes the formation of discrete cytoplasmic inclusions, termed stress granules (SGs). SGs are emerging as a component of the innate immune response to virus infection, and modulation of SG assembly is a common mechanism employed by viruses to counter this antiviral response. We previously showed that MRV infection induces SGs early and then interferes with SG formation as infection proceeds. In this work, we found that SG-associated proteins localized to the periphery of virus-encoded cytoplasmic structures, termed virus factories (VFs), where viral transcription, translation, and replication occur. The localization of SG proteins to VFs was dependent on polysome dissociation and occurred via association of the SG effector protein, Ras-GAP SH3-binding protein 1 (G3BP1), with the MRV nonstructural protein σNS, which localizes to VFs via association with VF nucleating protein, µNS. Deletion analysis of the σNS RNA binding domain and G3BP1 RNA (RRM) and ribosomal (RGG) binding domains showed that σNS association and VF localization phenotypes of G3BP1 do not occur solely through RNA or ribosomal binding but require both the RRM and RGG domains of G3BP1 for maximal viral-factory-like structure (VFL) localization and σNS association. Coexpression of σNS and µNS resulted in disruption of normal SG puncta, and in cells lacking G3BP1, MRV replication was enhanced in a manner correlating with strain-dependent induction of host translation shutoff. These results suggest that σNS association with G3BP1 and relocalization of G3BP1 to the VF periphery play roles in SG disruption to facilitate MRV replication in the host translational shutoff environment.IMPORTANCE SGs and SG effector proteins have emerged as important, yet poorly understood, players in the host's innate immune response to virus infection. MRV infection induces SGs early during infection that are dispersed and/or prevented from forming during late stages of infection despite continued activation of the eIF2α signaling pathway. Cellular and viral components involved in disruption of SGs during late stages of MRV infection remain to be elucidated. This work provides evidence that MRV disruption of SGs may be facilitated by association of the MRV nonstructural protein σNS with the major SG effector protein G3BP1 and subsequent localization of G3BP1 and other SG-associated proteins around the peripheries of virus-encoded factories, interrupting the normal formation of SGs. Our findings also reveal the importance of G3BP1 as an inhibitor of MRV replication during infection for the first time.

3.
J Bacteriol ; 197(10): 1819-27, 2015 May.
Article in English | MEDLINE | ID: mdl-25777676

ABSTRACT

UNLABELLED: The bacterial BipA protein belongs to the EF-G family of translational GTPases and has been postulated to be either a regulatory translation factor or a ribosome assembly factor. To distinguish between these hypotheses, we analyzed the effect of bipA deletion on three phenotypes associated with ribosome assembly factors: cold sensitivity, ribosome subunit distribution, and rRNA processing. We demonstrated that a ΔbipA strain exhibits a cold-sensitive phenotype that is similar to, and synergistic with, that of a strain with a known ribosome assembly factor, deaD. Additionally, the bipA deletion strain displayed a perturbed ribosome subunit distribution when grown at low temperature, similar to that of a deaD mutant, and again, the double mutant showed additive effects. The primary ribosomal deficiency noted was a decreased level of the 50S subunit and the appearance of a presumed pre-50S particle. Finally, deletion of bipA resulted in accumulation of pre23S rRNA, as did deletion of deaD. We further found that deletion of rluC, which encodes a pseudouridine synthase that modifies the 23S rRNA at three sites, suppressed all three phenotypes of the bipA mutant, supporting and extending previous findings. Together, these results suggest that BipA is important for the correct and efficient assembly of the 50S subunit of the ribosome at low temperature but when unmodified by RluC, the ribosomes become BipA independent for assembly. IMPORTANCE: The ribosome is the complex ribonucleoprotein machine responsible for protein synthesis in all cells. Although much has been learned about the structure and function of the ribosome, we do not fully understand how it is assembled or the accessory proteins that increase efficiency of biogenesis and function. This study examined one such protein, BipA. Our results indicate that BipA either directly or indirectly enhances the formation of the 50S subunit of the ribosome, particularly at low temperature. In addition, ribosomes contain a large number of modified nucleosides, including pseudouridines. This work demonstrates that the function of BipA is tied to the modification status of the ribosome and may help us understand why these modifications have been retained.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , GTP Phosphohydrolases/metabolism , Gene Deletion , Macromolecular Substances/metabolism , Phosphoproteins/metabolism , Ribosome Subunits, Large, Bacterial/metabolism , Cold Temperature , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/radiation effects , Escherichia coli Proteins/genetics , GTP Phosphohydrolases/genetics , Phosphoproteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL