Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 162: 111826, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33190869

ABSTRACT

Estuaries receive the anthropogenic pollutants of their watershed area. Dhamra estuary, on the east coast of India, is such an estuary that receives a huge amount of pollutants, and it will eventually pose a threat to the ecological sensitive areas in its vicinity. Therefore, a study was carried out on physico-chemical parameters and chlorophyll-a to delineate the sources of variation during pre-monsoon and post-monsoon seasons. Surface water sampling was carried out from 12 stations in the estuarine and coastal area. Factor analysis and cluster analysis were applied to seasonal data to understand the sources of variation. From the study, it was observed that the chemical parameters are severely affected by anthropogenic influences such as sediment dredging, aquaculture effluent, and waste from industry and sewage from upstream. In the long run, this will affect the nearby nesting ground of vulnerable Olive Ridley turtles, high bio-diverse mangrove forests, and saltwater crocodile habitat.


Subject(s)
Estuaries , Water Pollutants, Chemical , Bays , Environmental Monitoring , India , Seasons , Water , Water Pollutants, Chemical/analysis
2.
Environ Sci Pollut Res Int ; 27(24): 30093-30107, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32447735

ABSTRACT

Urbanized rivers flowing through polluted megacities receive substantial amount of carbon from domestic sewage and industrial effluents which can significantly alter the air-water CO2 flux rates. In this regard, we quantified the partial pressure of CO2 in the surface water (pCO2(water)), air-water CO2 fluxes, and associated biogeochemical parameters in the Hooghly River, India, flowing through two of the most polluted cities of the country, Kolkata and Howrah, over a complete annual cycle during spring tidal phase (SP) and neap tidal phase (NP). This urbanized part of Hooghly River was always supersaturated with CO2 having an annual mean pCO2(water) and air-water CO2 flux of ~ 3800 µatm and ~ 49 mol C m-2 year-1, respectively. Significant seasonal variability was observed for both pCO2(water) and air-water CO2 flux (pre-monsoon, 3038 ± 539 µatm and 5049 ± 964 µmol m-2 h-1; monsoon, 4609 ± 711 µatm and 7918 ± 1400 µmol m-2 h-1; post-monsoon, 2558 ± 258 µatm and 4048 ± 759 µmol m-2 h-1, respectively). Monthly mean pH and total alkalinity varied from 7.482 to 8.099 and from 2437 to 4136 µmol kg-1, respectively, over the annual cycle. pCO2(water) showed significant positive correlation with turbidity and negative correlation with electrical conductivity and gross primary productivity (GPP). High water discharge could have facilitated high turbidity, especially during the monsoon season, which led to depletion in GPP and enhancement in pCO2(water) which in turn led to very high CO2 effluxes. The CO2 efflux rate in this urbanized riverine stretch was substantially higher than that observed in previous studies carried out in the less urbanized estuarine stretch of Hooghly. This indicates that the presence of highly urbanized and polluted metropolis potentially enhanced the pCO2(water) and CO2 effluxes of this river. Similar observations were made recently in some Asian and Australian urban rivers.


Subject(s)
Carbon Dioxide/analysis , Rivers , Australia , Cities , Environmental Monitoring , India , Seasons
3.
Environ Sci Pollut Res Int ; 27(4): 4353-4364, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31832951

ABSTRACT

Tropical sewage-fed aquaculture ponds of East Kolkata Wetlands (EKW), a Ramsar site, act as deposition center of organic matter and nutrient-rich sewage from the Kolkata metropolis, which in turn is utilized as fish feed in aquaculture ponds. Increasing nutrient load due to multifarious anthropogenic activities usually alters the chlorophyll-a (chl-a) and the partial pressure of carbon dioxide in water [pCO2(water)] dynamics in such aquatic systems. In this regard, the effect of nutrient level alteration [8 times and 24 times, dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) in addition, respectively] on chl-a and pCO2(water) was tested upon waters of EKW aquaculture ponds in three different seasons by means of microcosm for 8 consecutive days. In both DIN 8× and DIP 8× treatments, an overall increase in chl-a concentrations was observed by the end of experiment; however, in DIN 24× and DIP 24× treatments, chl-a in most of the seasons was found to diminish after a steep rise in its concentration during 4th or 5th day. In all the seasons, the surface waters were supersaturated with CO2 under in situ conditions. The extent of supersaturation enhanced with nutrient addition during monsoon; however, in post-monsoon and pre-monsoon, nutrient addition led to undersaturation of CO2. Though chl-a concentration exhibited substantial variability during the microcosm experiments, the variation in trophic state index was not that much remarkable. In DIN-treated microcosms, uptake rate of DIP was significantly high compared to the reverse scenario, which implied that DIP has a more limiting character than DIN. In P-enriched treatments, the lack of N supplies probably limit production of autotrophic biomass. Thus it can be concluded that the nature of sewage and its DIN/DIP content can significantly alter the primary productivity the CO2 dynamics of such aquaculture ponds in future.


Subject(s)
Aquaculture , Carbon Dioxide/chemistry , Chlorophyll A/chemistry , Ponds/chemistry , Animals , Biomass , Nitrogen/chemistry , Phosphorus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...