Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Curr Pharm Des ; 26(27): 3269-3280, 2020.
Article in English | MEDLINE | ID: mdl-32048957

ABSTRACT

NLC is a next-generation lipid nanocarrier, which holds many advantages over other colloidal lipid carrier systems like higher drug loading, better and controlled release and enhanced stability. Owing to the unique structural composition, i.e. crystallized solid and liquid lipid blend, it offers excellent biocompatibility and higher permeation across physiological membranes like BBB. Moreover, the surface of NLC can easily be modified with target-specific ligands, proteins, peptides, etc. which makes it a potential candidate for brain targeting of CNS acting drugs. NLC has found various applications for the treatment of various CNS disorders including Alzheimer's disease, Parkinson's disease, schizophrenia, epilepsy, migraine, cerebral ischemia, etc. Among these, the application of NLC towards the treatment of AD has been well-explored in the past two decades. In this piece of work, we have discussed the types of NLC, its composition, fabrication techniques, characterization, stability profile and application in the treatment of AD.


Subject(s)
Alzheimer Disease , Nanostructures , Alzheimer Disease/drug therapy , Brain , Drug Carriers/therapeutic use , Humans , Lipids/therapeutic use , Particle Size
2.
AAPS PharmSciTech ; 20(5): 172, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31016473

ABSTRACT

The capabilities of principal component regression (PCR) and multiple linear regression (MLR) were evaluated to decipher and predict the impact of formulation and process parameters on the modeled metronidazole benzoate (MB)-ethyl cellulose (EC) microsponge (MBECM) properties. MBECM were prepared by a quasi-emulsion solvent diffusion method. A minimum experimentation was designed using Box-Behnken approach with one center point after initial screening experiments. Data was modeled by principal component analysis (PCA), PCR, and MLR. Two distinct groupings of developed MBECM was observed in initial qualitative PCA as a function of their respective formulation and processing parameters. Group A formulations with low dichloromethane, high PVA, and low stirring speed exhibited larger particle size, lower entrapment efficiency (EE), and lower actual drug content (ADC) than Group B formulations. Optimized quantitative PCR and MLR models demonstrated a linear dependence of particle size and quadratic dependence of EE and ADC on the studied formulation and process parameters. Interestingly, MLR models showed relatively better predictability of the selected MBECM formulation properties when compared with PCR. MBECM were amorphous in nature and spherical shaped. Carbopol® 940 NF based hydrogel of selected MBECM formulation exhibited a prolonged MB release than the commercial MB gel (Metrogyl®), showing no signs of necrosis in the goat mucosa. Thus, a properly designed minimum experimentation coupled with multivariate modeling generated a knowledge-rich target space, which enabled to understand and predict the performance of developed MBECM within a prescribed design space.


Subject(s)
Drug Compounding , Models, Theoretical , Acrylic Resins , Animals , Cellulose/analogs & derivatives , Cellulose/chemistry , Diffusion , Emulsions , Goats , Metronidazole/chemistry , Microscopy, Electron, Scanning , Particle Size , Principal Component Analysis
3.
Pharm Dev Technol ; 24(5): 550-559, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30175691

ABSTRACT

Low-order high-energy nifedipine (NIF) solid dispersions (SDs) were generated by melt solvent amorphization with polyethylene glycol (PEG) 1450 and hypromellose acetate succinate (HPMCAS-HF) to increase NIF solubility while achieving acceptable physical stability. HPMCAS-HF was used as a crystallization inhibitor. Individual formulation components, their physical mixtures (PMs), and SDs were characterized by differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy (FTIR). NIF solubility and percent crystallinity (PC) were determined at the initial time and after 5 days stored at 25 °C and 60% RH. FTIR indicated that hydrogen bonding was involved with the amorphization process. FTIR showed that NIF:HPMCAS-HF intermolecular interactions were weaker than NIF:PEG 1450 interactions. NIF:PEG 1450 SD solubilities were significantly higher than their PM counterparts (p < 0.0001). The solubilities of NIF:PEG 1450:HPMCAS-HF SDs were significantly higher than their corresponding NIF:PEG 1450 SDs (p < 0.0001-0.043). All the SD solubilities showed a statistically significant decrease (p < 0.0001) after storage for 5 days. SDs PC were statistically lower than their comparable PMs (p < 0.0001). The PCs of SDs with HPMCAS-HF were significantly lower than SDs not containing only PEG 1450. All SDs exhibited a significant increase in PC (p < 0.0001-0.0089) on storage. Thermogravimetric analysis results showed that HPMCAS-HF bound water at higher temperatures than PEG 1450 (p < 0.0001-0.0039). HPMCAS-HF slowed the crystallization process of SDs, although it did not completely inhibit NIF crystal growth.


Subject(s)
Calcium Channel Blockers/chemistry , Excipients/chemistry , Methylcellulose/analogs & derivatives , Nifedipine/chemistry , Polyethylene Glycols/chemistry , Crystallization , Drug Compounding , Drug Storage , Methylcellulose/chemistry , Powders , Solubility , Spectroscopy, Fourier Transform Infrared , Water/chemistry , X-Ray Diffraction
4.
Pharm Res ; 35(11): 202, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30187140

ABSTRACT

Under the heading "Methods-Synthesis of the Bioreducible Modified-PAE (mPAE)", on page 3, line 14-17, there is an error. The quantity unit of PAE and 2-iminothiolane hydrochloride needs to be corrected to mg instead of g.

5.
Pharm Res ; 35(10): 188, 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30105526

ABSTRACT

PURPOSE: Lung cancer is one of the leading causes of deaths in the United States, but currently available therapies for lung cancer are associated with reduced efficacy and adverse side effects. Small interfering RNA (siRNA) can knock down the expression of specific genes and result in therapeutic efficacy in lung cancer. Recently, mTOR siRNA has been shown to induce apoptosis in NSCLC cell lines but its use is limited due to poor stability in biological conditions. METHODS: In this study, we modified an aminoglyocisde-derived cationic poly (amino-ether) by introducing a thiol group using Traut's reagent to generate a bio-reducible modified-poly (amino-ether) (mPAE). The mPAE polymer was used to encapsulate mTOR siRNA by nanoprecipitation method, resulting in the formation of stable and bio-reducible nanoparticles (NPs) which possessed an average diameter of 114 nm and a surface charge of approximately +27 mV. RESULTS: The mTOR siRNA showed increased release from the mTS-mPAE NPs in the presence of 10 mM glutathione (GSH). The polymeric mTS-mPAE-NPs were also capable of efficient gene knockdown (60 and 64%) in A549 and H460 lung cancer cells, respectively without significant cytotoxicity at 30 µg/ml concentrations. The NPs also showed time-dependent cellular uptake for up to 24 h as determined using flow cytometry. Delivery of the siRNA using these NPs also resulted in significant inhibition of A549 and H460 cell proliferation in vitro, respectively. CONCLUSIONS: The results demonstrate that the mPAE polymer based NPs show strong potential for siRNA delivery to lung cancer cells. It is anticipated that future modification can help improve the efficacy of nucleic acid delivery, leading to higher inhibition of lung cancer growth in vitro and in vivo.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Ethers/chemistry , Lung Neoplasms/therapy , Polymers/chemical synthesis , RNA, Small Interfering/administration & dosage , Antineoplastic Agents/metabolism , Biological Transport , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Compounding , Humans , Lung Neoplasms/metabolism , Oxidation-Reduction , Rhodamines/metabolism
7.
Hawaii J Med Public Health ; 76(11): 318-325, 2017 11.
Article in English | MEDLINE | ID: mdl-29164017

ABSTRACT

In Hawai'i, lung cancer is among the top cancers diagnosed and a leading cause of death. Despite current understanding and modern surgery, radiology, and chemotherapy techniques, the survival of those suffering from lung cancer remains low. Current anticancer drugs have poor tumor tissue selectivity and toxicity issues that contribute to their overall low efficacy, detrimental effects to normal tissues, and drug resistance. A potential way of mitigating cancer is through RNA interference (RNAi) by the delivery of small interfering RNA (siRNA) to target select proteins or genes involved in cancer progression, known as oncoproteins or oncogenes, respectively. However, the clinical utility of delivering unformulated siRNA has been hindered due to poor cell penetration, nonspecific effects, rapid degradation, and short half-life. As an alternate for conventional chemotherapy, nanoparticles (AKA nanocarriers) may be designed to localize within the tumor environment and increase targeted cell internalization, thus reducing systemic adverse effects and increasing efficacy. Nanoparticles play important roles in drug delivery and have been widely studied for cancer therapy and diagnostics, termed collectively as theranostics. Nanoparticles composed of natural and artificial polymers, proteins, lipids, metals, and carbon-based materials have been developed for the delivery of siRNA. Cancer targeting has been improved by nanoparticle surface modification or conjugation with biomolecules that are attracted to or stimulate therapeutic agent release within cancer tissues or cells. In this mini-review article, we present recent progress in nanocarrier-mediated siRNA delivery systems that include lipid, polymer, metallic and carbon-based nanoparticles for lung cancer therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Lung Neoplasms/drug therapy , Nanocapsules/therapeutic use , RNA, Small Interfering/administration & dosage , Antineoplastic Agents/therapeutic use , Humans , Nanocapsules/administration & dosage , RNA, Small Interfering/therapeutic use
8.
Int J Pharm ; 532(1): 299-312, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-28888977

ABSTRACT

The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties.


Subject(s)
Tablets/chemistry , Mechanical Phenomena , Technology, Pharmaceutical
9.
Kona ; 34: 44-69, 2017.
Article in English | MEDLINE | ID: mdl-28392618

ABSTRACT

In this article, applications of engineered nanoparticles containing siRNA for inhalation delivery are reviewed and discussed. Diseases with identified protein malfunctions may be mitigated through the use of well-designed siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics to the lungs for various pulmonary diseases. A siRNA delivery system can be used to overcome the barriers of pulmonary delivery, such as anatomical barriers, mucociliary clearance, cough clearance, and alveolar macrophage clearance. Apart from naked siRNA aerosol delivery, previously studied siRNA carrier systems include those of lipidic, polymeric, peptide, or inorganic origin. These delivery systems can achieve pulmonary delivery through the generation of an aerosol via an inhaler or nebulizer. The preparation methodologies for these siRNA nanocarrier systems will be discussed herein. The use of inhalable nanocarrier siRNA delivery systems have barriers to their effective delivery, but overcoming these constraints while formulating a safe and effective delivery system will offer unique advances to the field of inhaled medicine.

10.
J Aerosol Med Pulm Drug Deliv ; 30(5): 299-321, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28277892

ABSTRACT

BACKGROUND: Aerosol delivery of chemotherapeutic nanocarriers represents a promising alternative for lung cancer therapy. This study optimized gemcitabine (Gem)-loaded gelatin nanocarriers (GNCs) cross-linked with genipin (Gem-GNCs) to evaluate their potential for nebulized lung cancer treatment. METHODS: Gem-GNCs were prepared by two-step desolvation and optimized through Taguchi design and characterized for physicochemical properties. Particle size and morphology were confirmed by scanning and transmission electron microscopy. In vitro release of Gem from Gem-GNCs performed in Dulbecco's phosphate-buffered saline and simulated lung fluid was evaluated to determine release mechanisms. Particle size stability was assessed under varying pH. Differential scanning calorimetry and powder X-ray diffraction were used to determine the presence and stability of Gem-GNC components and amorphization of Gem, respectively. Gem-GNC efficacy within A549 and H460 cells was evaluated using MTT assays. Mucus rheology upon treatment with Gem-GNCs, lactose, and normal saline control was measured. Andersen cascade impaction identified the aerodynamic particle size distribution of the nebulized formulation. RESULTS: Gem-GNCs had particle size, zeta potential, entrapment efficiency, and loading efficiency of 178 ± 7.1 nm, -18.9 mV, 92.5%, and 9.1%, respectively. The Gem and formulation excipients where molecularly dispersed and configured amorphously. Gem-GNCs were stable at pH 5.4-7.4 for 72 hours. Gem release from Gem-GNCs was governed by non-Fickian controlled release due to diffusion/erosion from a matrix-based nanocarrier. Gem-GNCs elicited a 40% reduction of the complex viscosity η*(1 Hz) of human bronchial epithelial cell mucus containing 3 wt% solids to mimic mild airway disease. The nebulized Gem-GNCs had a mass median aerodynamic diameter (MMAD) of 2.0 ± 0.16 µm, geometric standard deviation (GSD) of 2.7 ± 0.16, and fine particle fraction (FPF) of 75.2% ± 2.4%. The Gem-GNC formulation did not outperform the Gem solution in A549 cells. However, in H460, Gem-GNCs outperformed the Gem IC50 reduction by ∼5-fold at 48 and 10-fold 72 hours. CONCLUSION: Stable, effective, and sustained-release Gem-GNCs were developed. The nebulized Gem-GNCs had satisfactory MMAD, GSD, and FPF and the formulation reduced the dynamic complex viscosity of mucus consistent with increased mobility of nanoparticles.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Deoxycytidine/analogs & derivatives , Drug Delivery Systems , Lung Neoplasms/drug therapy , A549 Cells , Administration, Inhalation , Aerosols , Calorimetry, Differential Scanning , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , Delayed-Action Preparations , Deoxycytidine/administration & dosage , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Drug Liberation , Gelatin , Humans , Lung Neoplasms/pathology , Nanoparticles , Particle Size , Viscosity , X-Ray Diffraction , Gemcitabine
11.
Mol Pharm ; 14(1): 252-263, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28043134

ABSTRACT

Desired characteristics of nanocarriers are crucial to explore its therapeutic potential. This investigation aimed to develop tunable bioresponsive newly synthesized unique arginine grafted poly(cystaminebis(acrylamide)-diaminohexane) [ABP] polymeric matrix based nanocarriers by using L9 Taguchi factorial design, desirability function, and multivariate method. The selected formulation and process parameters were ABP concentration, acetone concentration, the volume ratio of acetone to ABP solution, and drug concentration. The measured nanocarrier characteristics were particle size, polydispersity index, zeta potential, and percentage drug loading. Experimental validation of nanocarrier characteristics computed from initially developed predictive model showed nonsignificant differences (p > 0.05). The multivariate modeling based optimized cationic nanocarrier formulation of <100 nm loaded with hydrophilic acetaminophen was readapted for a hydrophobic etoposide loading without significant changes (p > 0.05) except for improved loading percentage. This is the first study focusing on ABP polymeric matrix based nanocarrier development. Nanocarrier particle size was stable in PBS 7.4 for 48 h. The increase of zeta potential at lower pH 6.4, compared to the physiological pH, showed possible endosomal escape capability. The glutathione triggered release at the physiological conditions indicated the competence of cytosolic targeting delivery of the loaded drug from bioresponsive nanocarriers. In conclusion, this unique systematic approach provides rational evaluation and prediction of a tunable bioresponsive ABP based matrix nanocarrier, which was built on selected limited number of smart experimentation.


Subject(s)
Acrylamide/chemistry , Arginine/chemistry , Benzofurans/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Chemistry, Pharmaceutical/methods , Etoposide/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Particle Size
12.
Mol Ther Nucleic Acids ; 5(11): e384, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27845769

ABSTRACT

Lung cancer is the leading cause of cancer deaths in both men and women in the United States accounting for about 27% of all cancer deceases. In our effort to develop newer therapy for lung cancer, we evaluated the combinatory antitumor effect of siRNA targeting VEGF and the PI3K/mTOR dual inhibitor PF-04691502. We analyzed the anticancer effect of siRNA VEGF and PF-04691502 combination on proliferation, colony formation and migration of A549 and H460 lung cancer cells. Additionally, we assessed the combination treatment antiangiogenic effect on human umbilical vein endothelial cells. Here, we show for the first time that the antiangiogenic siRNA VEGF potentiates the PF-04691502 anticancer activity against non-small-cell lung cancer. We observed a significant (P < 0.05) decrease in cell viability, colony formation, and migration for the combination comparing with the single drug treatment. We also showed a significant (P < 0.05) enhanced effect of the combination treatment inhibiting angiogenesis progression and tube formation organization compared to the single drug treatment groups. Our findings demonstrated an enhanced synergistic anticancer effect of siRNA VEGF and PF-04691502 combination therapy by targeting two main pathways involved in lung cancer cell survival and angiogenesis which will be useful for future preclinical studies and potentially for lung cancer patient management.

13.
Kona ; 33: 63-85, 2016 Feb 28.
Article in English | MEDLINE | ID: mdl-27081214

ABSTRACT

This article reviews the pulmonary route of administration, aerosol delivery devices, characterization of pulmonary drug delivery systems, and discusses the rationale for inhaled delivery of siRNA. Diseases with known protein malfunctions may be mitigated through the use of siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics for the treatment of various pulmonary diseases, however barriers to pulmonary delivery and intracellular delivery of siRNA exists. siRNA loaded nanocarriers can be used to overcome the barriers associated with the pulmonary route, such as anatomical barriers, mucociliary clearance, and alveolar macrophage clearance. Apart from naked siRNA aerosol delivery, previously studied siRNA carrier systems comprise of lipidic, polymeric, peptide, or inorganic origin. Such siRNA delivery systems formulated as aerosols can be successfully delivered via an inhaler or nebulizer to the pulmonary region. Preclinical animal investigations of inhaled siRNA therapeutics rely on intratracheal and intranasal siRNA and siRNA nanocarrier delivery. Aerosolized siRNA delivery systems may be characterized using in vitro techniques, such as dissolution test, inertial cascade impaction, delivered dose uniformity assay, laser diffraction, and laser Doppler velocimetry. The ex vivo techniques used to characterize pulmonary administered formulations include the isolated perfused lung model. In vivo techniques like gamma scintigraphy, 3D SPECT, PET, MRI, fluorescence imaging and pharmacokinetic/pharmacodynamics analysis may be used for evaluation of aerosolized siRNA delivery systems. The use of inhalable siRNA delivery systems encounters barriers to their delivery, however overcoming the barriers while formulating a safe and effective delivery system will offer unique advances to the field of inhaled medicine.

15.
J Biomed Nanotechnol ; 11(11): 1859-98, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26554150

ABSTRACT

Nanotechnology and combination therapy are two major fields that show great promise in the treatment of cancer. The delivery of drugs via nanoparticles helps to improve drug's therapeutic effectiveness while reducing adverse side effects associated wifh high dosage by improving their pharmacokinetics. Taking advantage of molecular markers over-expressing on tumor tissues compared to normal cells, an "active" molecular marker targeted approach would be-beneficial for cancer therapy. These actively targeted nanoparticles would increase drug concentration at the tumor site, improving efficacy while further reducing chemo-resistance. The multidisciplinary approach may help to improve the overall efficacy in cancer therapy. This review article summarizes recent developments of targeted multifunctional nanoparticles in the delivery, of various drugs for a combinational chemotherapy approach to cancer treatment and imaging.


Subject(s)
Antineoplastic Agents/therapeutic use , Diagnostic Imaging , Drug Delivery Systems , Nanomedicine , Nanoparticles/therapeutic use , Animals , Biomedical Research , Cell Line, Tumor , Dendrimers , Humans , Liposomes , Mice , Polymers , Xenograft Model Antitumor Assays
16.
Curr Pharm Des ; 21(31): 4594-605, 2015.
Article in English | MEDLINE | ID: mdl-26362644

ABSTRACT

The topical application of therapeutic agent has shown promising efficacy in the treatment of skin disorders. The siRNA based therapies have been used for treatment of various disorders including skin diseases. The topical delivery of siRNA based therapies has opened new perspectives for the treatment of skin disorders. The use of siRNA is limited due to the rapid degradation and poor cellular uptake. Also, the stratum corneum, the top layer of skin is the major barrier for the delivery of topical agents. There is unmet need for efficient topical formulation that will deliver the siRNA to the site of action and also overcome the associated siRNA delivery limitations. The topical delivery of siRNA has been achieved using viral or nonviral methods, and the combination of non-viral methods with an active permeation method such as iontophoresis, sonophoresis or microneedles for the treatment of skin disorders. These delivery approaches have been tested in a preclinical setup and few cases the results have shown promise for clinical trials. This review provides an update on the advances in the non-viral delivery approaches for siRNA delivery for skin disorders and use of various delivery approaches for efficient delivery at the disease site.


Subject(s)
Drug Delivery Systems , RNA, Small Interfering/administration & dosage , Skin Diseases/therapy , Administration, Cutaneous , Animals , Humans , Nanoparticles , Pharmaceutical Preparations/administration & dosage , Skin Absorption , Skin Diseases/drug therapy
18.
Mol Pharm ; 11(10): 3671-83, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25179221

ABSTRACT

Onconase (ONC) is a member of a ribonuclease superfamily that has cytostatic activity against malignant mesothelioma (MM). The objective of this investigation was to develop bovine serum albumin (BSA)-chitosan based hybrid nanoformulations for the efficient delivery of ONC to MM while minimizing the exposure to normal tissues. Taguchi orthogonal array L9 type design was used to formulate ONC loaded BSA nanocarriers (ONC-ANC) with a mean particle size of 15.78 ± 0.24 nm (ζ = -21.89 ± 0.11 mV). The ONC-ANC surface was hybridized using varying chitosan concentrations ranging between 0.100 and 0.175% w/v to form various ONC loaded hybrid nanocarriers (ONC-HNC). The obtained data set was analyzed by principal component analysis (PCA) and principal component regressions (PCR) to decode the effects of investigated design variables. PCA showed positive correlations between investigated design variables like BSA, ethanol dilution, and total ethanol with particle size and entrapment efficiency (EE) of formulated nanocarriers. PCR showed that the particle size depends on BSA, ethanol dilution, and total ethanol content, while EE was only influenced by BSA content. Further analysis of chitosan and TPP effects used for coating of ONC-ANC by PCR confirmed their positive impacts on the particle size, zeta potential, and prolongation of ONC release compared to uncoated ONC-ANC. PCR analysis of preliminary stability studies showed increase in the particle size and zeta potential at lower pH. However, particle size, zeta potential, and EE of developed HNC were below 63 nm, 31 mV, and 96%, respectively, indicating their stability under subjected buffer conditions. Out of the developed formulations, HNC showed enhanced inhibition of cell viability with lower IC50 against human MM-REN cells compared to ONC and ONC-ANC. This might be attributed to the better cell uptake of HNC, which was confirmed in the cell uptake fluorescence studies. These studies indicated that a developed nanotherapeutic approach might aid in reducing the therapeutic dose of ONC, minimizing adverse effects by limiting the exposure of ONC to normal tissues, and help in the development of new therapeutic forms and routes of administration.


Subject(s)
Drug Carriers/chemistry , Lung Neoplasms , Mesothelioma , Nanoparticles/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Humans , Lung Neoplasms/metabolism , Mesothelioma/metabolism , Mesothelioma, Malignant , Multivariate Analysis , Polymerase Chain Reaction
19.
J Control Release ; 194: 238-56, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25204288

ABSTRACT

Chemotherapeutic agents have certain limitations when it comes to treating cancer, the most important being severe side effects along with multidrug resistance developed against them. Tumor cells exhibit drug resistance due to activation of various cellular level processes viz. activation of drug efflux pumps, anti-apoptotic defense mechanisms, etc. Currently, RNA interference (RNAi) based therapeutic approaches are under vibrant scrutinization to seek cancer cure. Especially small interfering RNA (siRNA) and micro RNA (miRNA), are able to knock down the carcinogenic genes by targeting the mRNA expression, which underlies the uniqueness of this therapeutic approach. Recent research focus in the regime of cancer therapy involves the engagement of targeted delivery of siRNA/miRNA in combinations with other therapeutic agents (such as gene, DNA or chemotherapeutic drug) for targeting permeability glycoprotein (P-gp), multidrug resistant protein 1 (MRP-1), B-cell lymphoma (BCL-2) and other targets that are mainly responsible for resistance in cancer therapy. RNAi-chemotherapeutic drug combinations have also been found to be effective against different molecular targets as well and can increase the sensitization of cancer cells to therapy several folds. However, due to stability issues associated with siRNA/miRNA suitable protective carrier is needed and nanotechnology based approaches have been widely explored to overcome these drawbacks. Furthermore, it has been univocally advocated that the co-delivery of siRNA/miRNA with other chemodrugs significantly enhances their capability to overcome cancer resistance compared to naked counterparts. The objective of this article is to review recent nanocarrier based approaches adopted for the delivery of siRNA/miRNA combinations with other anticancer agents (siRNA/miRNA/pDNA/chemodrugs) to treat cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , MicroRNAs/administration & dosage , Nanoparticles , Neoplasms/therapy , RNA, Small Interfering/administration & dosage , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Drug Carriers , Drug Delivery Systems , Humans , MicroRNAs/therapeutic use , Nanotechnology , Neoplasms/drug therapy , RNA, Small Interfering/therapeutic use
20.
J Drug Target ; 22(6): 498-508, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24731057

ABSTRACT

The purpose of this study was to investigate the permeation of Noscapine (Nos) across the Caco-2 and Madin-Darby canine kidney (MDCK) cell monolayers and to evaluate the influence of absorption enhancers on in vitro and in vivo absorption of Nos. The bidirectional transport of Nos was studied in Caco-2 and MDCK cell monolayers at pH 5.0-7.8. The effect of 0.5% w/v chitosan (CH) or Captisol (CP) on Nos permeability was investigated at pH 5.0 and 5.8. The effect of 1-5% w/v of CP on oral bioavailability of Nos (150 mg/kg) was evaluated in Sprague-Dawley rats. The effective permeability coefficients (Peff) of Nos across Caco-2 and MDCK cell monolayers was found to be in the order of pH 5.0 > 5.8 > 6.8 > 7.8. The efflux ratios of Peff < 2 demonstrated that active efflux does not limit the absorption of Nos. The use of CH or CP have shown significant (***, p < 0.001) enhancement in Peff of Nos across cell monolayer compared with the control group. The CP (1-5% w/v) based Nos formulations resulted in significant (***, p < 0.001) increase in the bioavailability of Nos compared with Nos solution. The use of CP represents viable approach for enhancing the oral bioavailability of Nos and reducing the required dose.


Subject(s)
Antitussive Agents/pharmacokinetics , Intestinal Absorption , Noscapine/pharmacokinetics , Animals , Biological Availability , Caco-2 Cells , Cells, Cultured , Chromatography, High Pressure Liquid , Dogs , Humans , Hydrogen-Ion Concentration , Rats , Rats, Sprague-Dawley , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...