Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychologia ; 198: 108880, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38555063

ABSTRACT

Social perception and communication differ between those with and without autism, even when verbal fluency and intellectual ability are equated. Previous work found that observers responded more quickly to an actor's points if the actor had chosen by themselves where to point instead of being directed where to point. Notably, this 'choice-advantage' effect decreased across non-autistic participants as the number of autistic-like traits and tendencies increased (Pesquita et al., 2016). Here, we build on that work using the same task to study individuals over a broader range of the spectrum, from autistic to non-autistic, measuring both response initiation and mouse movement times, and considering the response to each actor separately. Autistic and non-autistic observers viewed videos of three different actors pointing to one of two locations, without knowing that the actors were sometimes freely choosing to point to one target and other times being directed where to point. All observers exhibited a choice-advantage overall, meaning they responded more rapidly when actors were freely choosing versus when they were directed, indicating a sensitivity to the actors' postural cues and movements. Our fine-grained analyses found a more robust choice-advantage to some actors than others, with autistic observers showing a choice-advantage only in response to one of the actors, suggesting that both actor and observer characteristics influence the overall effect. We briefly explore existing actor characteristics that may have contributed to this effect, finding that both duration of exposure to pre-movement cues and kinematic cues of the actors likely influence the choice advantage to different degrees across the groups. Altogether, the evidence suggested that both autistic and non-autistic individuals could detect the choice-advantage signal, but that for autistic observers the choice-advantage was actor specific. Notably, we found that the influence of the signal, when present, was detected early for all actors by the non-autistic observers, but detected later and only for one actor by the autistic observers. Altogether, we have more accurately characterized the ability of social-perception in autistic individuals as intact, but highlighted that detection of signal is likely delayed/distributed compared to non-autistic observers and that it is important to investigate actor characteristics that may influence detection and use of their social-perception signals.


Subject(s)
Autistic Disorder , Cues , Social Perception , Humans , Male , Female , Autistic Disorder/psychology , Autistic Disorder/physiopathology , Adult , Young Adult , Visual Perception/physiology , Reaction Time/physiology , Communication , Psychomotor Performance/physiology , Choice Behavior/physiology , Adolescent , Photic Stimulation
2.
Neuroscience ; 305: 49-66, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26235433

ABSTRACT

Rapid automatized naming (RAN) has been established to be a strong predictor of reading. Yet, the neural correlates underlying the RAN-reading relationship remain unknown. Thus, the purpose of this study was to determine: (a) the extent to which RAN and reading activate similar brain regions (within subjects), (b) whether RAN and reading are directly related in the shared activity network outlined in (a), and (c) to what extent RAN neural activation predicts behavioral reading performance. Using functional magnetic resonance imaging (fMRI), university students (N=15; Mean age=20.6 years) were assessed on RAN (letters and digits) and single-word reading (words and non-words). The results revealed a common RAN-reading network that included regions associated with motor planning (cerebellum), semantic access (middle temporal gyrus), articulation (supplementary motor area, pre-motor), and grapheme-phoneme translation (supramarginal gyrus). We found differences between RAN and reading with respect to percent signal change (PSC) in phonological and orthographic regions, but not in articulatory regions. Significant correlations between the neural RAN and reading parameters were found primarily in motor/articulatory regions. Further, we found a unique relationship between in-scanner reading response time and RAN PSC in the left inferior frontal gyrus. Taken together, these findings support the notion that RAN and reading activate similar neural networks. However, the relationship between RAN and reading is primarily driven by commonalities in the motor-sequencing/articulatory processes.


Subject(s)
Association , Brain/blood supply , Magnetic Resonance Imaging , Names , Reading , Adolescent , Adult , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted , Male , Oxygen/blood , Phonetics , Reaction Time , Semantics , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...