Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 28(19): 115681, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32912429

ABSTRACT

Autophagy is postulated to be required by cancer cells to survive periods of metabolic and/or hypoxic stress. ATG7 is the E1 enzyme that is required for activation of Ubl conjugation pathways involved in autophagosome formation. This article describes the design and optimization of pyrazolopyrimidine sulfamate compounds as potent and selective inhibitors of ATG7. Cellular levels of the autophagy markers, LC3B and NBR1, are regulated following treatment with these compounds.


Subject(s)
Autophagy-Related Protein 7/antagonists & inhibitors , Drug Discovery , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Sulfonic Acids/pharmacology , Autophagy/drug effects , Autophagy-Related Protein 7/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Sulfonic Acids/chemical synthesis , Sulfonic Acids/chemistry
2.
J Biomark ; 2016: 1274603, 2016.
Article in English | MEDLINE | ID: mdl-27247826

ABSTRACT

Objective. Use of tyramide signal amplification (TSA) to detect autophagy biomarkers in formalin fixed and paraffin embedded (FFPE) xenograft tissue. Materials and Methods. Autophagy marker regulation was studied in xenograft tissues using Amp HQ IHC and standard IHC methods. Results. The data demonstrate the feasibility of using high sensitivity TSA IHC assays to measure low abundant autophagy markers in FFPE xenograft tissue.

3.
Bioorg Med Chem Lett ; 26(4): 1156-60, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26804230

ABSTRACT

Investigations of a biaryl ether scaffold identified tetrahydronaphthalene Raf inhibitors with good in vivo activity; however these compounds had affinity toward the hERG potassium channel. Herein we describe our work to eliminate this hERG activity via alteration of the substituents on the benzoic amide functionality. The resulting compounds have improved selectivity against the hERG channel, good pharmacokinetic properties and potently inhibit the Raf pathway in vivo.


Subject(s)
Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Tetrahydronaphthalenes/chemistry , Animals , Cell Line, Tumor , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Inhibitory Concentration 50 , Male , Mice , Mutagenesis , Neoplasms/drug therapy , Neoplasms/pathology , Protein Binding , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tetrahydronaphthalenes/pharmacokinetics , Tetrahydronaphthalenes/therapeutic use , Transplantation, Heterologous
4.
Cancer Res ; 73(23): 7043-55, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24121489

ABSTRACT

The mitogen-activated protein kinase (MAPK) pathway is particularly important for the survival and proliferation of melanoma cells. Somatic mutations in BRAF and NRAS are frequently observed in melanoma. Recently, the BRAF inhibitors vemurafenib and dabrafenib have emerged as promising agents for the treatment of melanoma patients with BRAF-activating mutations. However, as BRAF inhibitors induce RAF paradoxical activation via RAF dimerization in BRAF wild-type cells, rapid emergence of acquired resistance and secondary skin tumors as well as presence of few effective treatment options for melanoma bearing wild-type BRAF (including NRAS-mutant melanoma) are clinical concerns. Here, we demonstrate that the selective pan-RAF inhibitor TAK-632 suppresses RAF activity in BRAF wild-type cells with minimal RAF paradoxical activation. Our analysis using RNAi and TAK-632 in preclinical models reveals that the MAPK pathway of NRAS-mutated melanoma cells is highly dependent on RAF. We also show that TAK-632 induces RAF dimerization but inhibits the kinase activity of the RAF dimer, probably because of its slow dissociation from RAF. As a result, TAK-632 demonstrates potent antiproliferative effects both on NRAS-mutated melanoma cells and BRAF-mutated melanoma cells with acquired resistance to BRAF inhibitors through NRAS mutation or BRAF truncation. Furthermore, we demonstrate that the combination of TAK-632 and the MAPK kinase (MEK) inhibitor TAK-733 exhibits synergistic antiproliferative effects on these cells. Our findings characterize the unique features of TAK-632 as a pan-RAF inhibitor and provide rationale for its further investigation in NRAS-mutated melanoma and a subset of BRAF-mutated melanomas refractory to BRAF inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzothiazoles/therapeutic use , Drug Resistance, Neoplasm/drug effects , Melanoma/drug therapy , Nitriles/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Skin Neoplasms/drug therapy , raf Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Cells, Cultured , Humans , MAP Kinase Signaling System/drug effects , Melanoma/pathology , Mice , Mice, Nude , Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Skin Neoplasms/pathology , Xenograft Model Antitumor Assays
5.
J Med Chem ; 54(6): 1836-46, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21341678

ABSTRACT

Inhibition of mutant B-Raf signaling, through either direct inhibition of the enzyme or inhibition of MEK, the direct substrate of Raf, has been demonstrated preclinically to inhibit tumor growth. Very recently, treatment of B-Raf mutant melanoma patients with a selective B-Raf inhibitor has resulted in promising preliminary evidence of antitumor activity. This article describes the design and optimization of tetrahydronaphthalene-derived compounds as potent inhibitors of the Raf pathway in vitro and in vivo. These compounds possess good pharmacokinetic properties in rodents and inhibit B-Raf mutant tumor growth in mouse xenograft models.


Subject(s)
Antineoplastic Agents/chemical synthesis , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Tetrahydronaphthalenes/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Availability , Crystallography, X-Ray , Drug Design , Melanoma, Experimental/drug therapy , Melanoma, Experimental/enzymology , Melanoma, Experimental/pathology , Mice , Mice, Nude , Models, Molecular , Mutation , Proto-Oncogene Proteins B-raf/genetics , Stereoisomerism , Structure-Activity Relationship , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...