Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(12): 8567-8577, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38487518

ABSTRACT

Ceramics of (Ba1-xSrx)2SmTi2Nb3O15, denoted as BSxSTN (x = 0, 0.25 and 0.5), were synthesized by the conventional solid-state reactions route. The impact of Sr-substitution in Ba2SmTi2Nb3O15 ceramics on their structural, optical, and dielectric properties are investigated. The Rietveld method was employed to confirm the formation of tetragonal tungsten bronze with the P4bm space group, using X-ray diffraction data. The substitution of Ba by Sr resulted in a decrease in cell parameters, density, and the average crystallite size as determined by Scherrer's formula ranged from 29.4 to 32 nm. The compounds frequency-dependent dielectric properties were studied using complex impedance spectroscopy over a temperature range of 50 to 420 °C at different frequencies. Dielectric measurements revealed a high dielectric constant, and the compounds exhibited characteristics of diffuse ferroelectric behavior. As the Sr content increased, optical gap energy increases from 3.29 to 3.59 eV, diffusivity increased from 1.19 to 1.52, Curie temperature (Tc) decreased from 269 to 213 °C, and the dielectric loss at room temperature and 1 kHz significantly decreased from 3 × 10-3 to 7 × 10-4. The correlation between (Tc) and the off-center cationic displacement of Ti/Nb in the octahedral Ti/NbO6 was analyzed. Cole-Cole plots for each sample displayed a single semicircular arc, indicating the presence of a single relaxation process.

2.
RSC Adv ; 12(51): 33124-33141, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36425213

ABSTRACT

This paper presents a systematic study of the substitution effect by lanthanides (Ln3+ = Sm3+ and La3+) in the A-site of perovskite Ba(1-x)Ln2x/3(Ti0.99Zr0.01)O3 with a substitution rate equal to 3.4%. All samples were synthesized by the classical solid-state reaction route and characterized by X-ray diffraction and a complex impedance spectroscopy technique. The synthesized compounds exhibit single-phase perovskite structures without detectable secondary phases. The P4mm space group was verified by the Rietveld method from the X-ray diffraction data, with the tetragonal distortion decreasing with the increasing ionic radius of the lanthanides. SEM micrographs of all ceramics revealed high densification, low porosity and homogeneous distribution of grains of different sizes over the entire surface. The dielectric properties of non-doped and Sm3+ and La3+ doped Ba(1-x)Ln2x/3(Ti0.99Zr0.01)O3 compound are studied in the temperature range of 40-250 °C. The dielectric permittivity ε' increases and the ferroelectric-paraelectric phase transition temperature decreases when the lanthanides are inserted into the A-site of Ba(1-x)Ln2x/3(Ti0.99Zr0.01)O3 perovskite. The Nyquist plots indicate a non-Debye type relaxation process. Conductivity and electrical modulus plots as a function of frequency (10 to 106 Hz) include two electrical responses corresponding to grain and grain boundary effects for all ceramics studied.

3.
RSC Adv ; 12(18): 10895-10910, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35425059

ABSTRACT

Undoped Ba(Zr0.9Ti0.1)O3 and rare-earth-doped (Ba1-x RE2x/3)(Zr0.9Ti0.1)O3 (RE3+ = La3+, Sm3+) perovskite compounds were synthesized by the conventional solid-state reaction route. Both solubility of rare earth in Ba(Zr0.9Ti0.1)O3 and formation of perovskite structure with the Pm3̄m space group were verified by the Rietveld method using X-ray diffraction data. SEM micrographs of all ceramics revealed high densification, low porosity, and even homogeneous grain distribution of various dimensions over the total surface. The frequency-dependent electrical properties were analyzed by complex impedance spectroscopy. Different types of studies such as the Nyquist plot, real and imaginary part of impedance, conductivity, modulus formalism, and charge carriers activation energy were used to explain the microstructure-electrical property relationships.

4.
RSC Adv ; 10(47): 28007-28018, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-35519146

ABSTRACT

In this work, Zn co-doped tungsten bronze having nominal formula Ba5CaTi1.94Zn0.06Nb8O30 has been synthesized and systematically studied for structure, dielectric and electrical properties. The formation of the phase of tetragonal tungsten bronze with space group P4bm and the occurrence of oxygen vacancies were verified by the Rietveld refinement using X-ray diffraction data. Scanning electron microscopy (SEM) of Ba5CaTi1.94Zn0.06Nb8O30 ceramic shows high densification, low porosity, and homogeneous distribution of grains of different sizes over the total surface. The sample shows a dielectric anomaly of ferroelectric paraelectric type at 262 °C, and has non-relaxor type of diffuse phase transition. The electrical property (complex impedance Z*, complex permittivity ε*, complex modulus M*) of Ba5CaTi1.94Zn0.06Nb8O30 ceramic has been investigated by non-destructive complex impedance spectroscopy (CIS) as a function of frequency at different temperatures. Grains and grain boundaries conduction is detected from a complex impedance spectrum by fitting the Nyquist plot with an appropriate electrical circuit. The Nyquist plot indicates the negative temperature coefficient of resistance (NTCR) character of Ba5CaTi1.94Zn0.06Nb8O30 ceramic. The variation of AC conductivity as a function of frequency reveals that the compound has an Arrhenius-type behavior of electrical conductivity. The DC electrical conductivities of grains and grain boundaries have been studied. The presence of non-Debye relaxations was verified by a complex modulus analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...