Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(2): e24550, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312697

ABSTRACT

Non-communicable diseases (NCDs) are a worldwide health issue because of their prevalence, negative impacts on human welfare, and economic costs. Protease enzymes play important roles in viral and NCD diseases. Slowing disease progression by inhibiting proteases using small-molecule inhibitors or endogenous inhibitory peptides appears to be crucial. Secretory leukocyte protease inhibitor (SLPI), an inflammatory serine protease inhibitor, maintains protease/antiprotease balance. SLPI is produced by host defense effector cells during inflammation to prevent proteolytic enzyme-induced tissue damage. The etiology of noncommunicable illnesses is linked to SLPI's immunomodulatory and tissue regeneration roles. Disease phases are associated with SLPI levels and activity changes in regional tissue and circulation. SLPI has been extensively evaluated in inflammation, but rarely in NCDs. Unfortunately, the thorough evaluation of SLPI's pathophysiological functions in NCDs in multiple research models has not been published elsewhere. In this review, data from PubMed from 2014 to 2023 was collected, analysed, and categorized into in vitro, in vivo, and clinical studies. According to the review, serine protease inhibitor (SLPI) activity control is linked to non-communicable diseases (NCDs) and other illnesses. Overexpression of the SLPI gene and protein may be a viable diagnostic and therapeutic target for non-communicable diseases (NCDs). SLPI is also cytoprotective, making it a unique treatment. These findings suggest that future research should focus on these pathways using advanced methods, reliable biomarkers, and therapy approaches to assess susceptibility and illness progression. Implications from this review will help pave the way for a new therapeutic target and diagnosis marker for non-communicable diseases.

2.
Sci Rep ; 13(1): 23013, 2023 12 27.
Article in English | MEDLINE | ID: mdl-38155270

ABSTRACT

Osseointegration is vital to success in orthopedic and dental reconstructions with implanted materials. The bone matrix or cells-particularly osteoblasts-are required to achieve functional contact on the implant surface. Osteoblast induction is therefore essential for osteogenesis to occur. Enhancement of osteoblast adhesion, proliferation, and differentiation, particularly by implant surface modifications, have been found challenging to develop. Secretory Leukocyte Protease Inhibitor (SLPI), a cation ionic protein with anti-inflammatory and anti-bacterial activities, showed activation in osteoblast proliferation and differentiation. However, the effects of coating recombinant human (rh) SLPI on a titanium alloy surface on human osteoblast adhesion, proliferation, and differentiation has never been investigated. In this study, titanium alloys (Ti-6Al-4V) were coated with rhSLPI, while human osteoblast adhesion, proliferation, differentiation, actin cytoskeletal organization, and gene expressions involved in cell adhesion and differentiation were investigated. The results indicate that coating titanium with 10-100 µg/ml rhSLPI enhanced the physical properties of the Ti surface and enhanced human osteoblast (hFOB 1.19) cell adhesion, activated actin dynamic, enhanced adhesive forces, upregulated integrins α1, α2, and α5, enhanced cell proliferation, mineralization, alkaline phosphatase activity, and upregulated ALP, OCN, and Runx2. This is the first study to demonstrate that coating SLPI on titanium surfaces enhances osseointegration and could be a candidate molecule for surface modification in medical implants.


Subject(s)
Secretory Leukocyte Peptidase Inhibitor , Titanium , Humans , Titanium/pharmacology , Titanium/metabolism , Secretory Leukocyte Peptidase Inhibitor/genetics , Secretory Leukocyte Peptidase Inhibitor/pharmacology , Secretory Leukocyte Peptidase Inhibitor/metabolism , Actins/metabolism , Osteoblasts/metabolism , Cell Differentiation , Cell Adhesion , Osseointegration , Cell Proliferation , Surface Properties , Alloys/pharmacology , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/metabolism
3.
Heliyon ; 9(9): e20150, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809945

ABSTRACT

Ischemic Heart Disease (IHD) is the main global cause of death. Previous studies indicated that recombinant human secretory leukocyte protease inhibitor (rhSLPI) exhibits a cardioprotective effect against myocardial ischaemia/reperfusion (I/R) injury. However, SLPI has a short half-life in vivo due to digestion by protease enzymes in circulation. The application of nanoparticle encapsulation could be beneficial for SLPI delivery. Several types of nanoparticles have been developed to encapsulate SLPI and applied in some disease models. However, silica nanoparticles for rhSLPI delivery, particularly on myocardial I/R injury, have never been studied. In this study, we aimed to fabricate gelatin-covered silica nanoparticles (GSNPs) to encapsulate rhSLPI and cardioprotective effect of GSNP-SLPI against an in vitro simulated ischaemia/reperfusion (sI/R). Silica dioxide nanoparticles (SNPs) were fabricated followed by incubation with 0.33 mg/mL of rhSLPI. Then, SNPs containing rhSLPI were coated with gelatin (GSNPs). The GSNPs and rhSLPI-GSNPs were characterized by particle size, zeta potential, and morphology scanning electron microscope (SEM). The concentration of rhSLPI in rhSLPI-GSNPs and drug release was determined by ELISA. Then, cytotoxicity and cardioprotective effect were determined by incubation of GSNPs or rhSLPI-GSNPs with rat cardiac myoblast cell line (H9c2) subjected to simulated ischaemia/reperfusion (sI/R). The results showed the particle size of SNPs, GSNPs, and rhSLPI-GSNPs was 273, 300, and 301 nm, with a zeta potential of -57.21, -22.40, and -24.50 mV, respectively. One milligram of rhSLPI-GSNPs contains 235 ng of rhSLPI. The rhSLPI-GSNPs showed no cytotoxicity on cardiac cells. Treatment with 10 µg/ml of rhSLPI-GSNPs could significantly reduce sI/R induced cardiac cell injury and death. In conclusion, this is the first study to show successful of fabricating novel rhSLPI-encapsulating gelatin-covered silica nanoparticles (rhSLPI-GSNPs) and the cardioprotective effects of rhSLPI-GSNPs against cardiac cell injury and death from myocardial ischaemia/reperfusion.

4.
Front Cardiovasc Med ; 9: 976083, 2022.
Article in English | MEDLINE | ID: mdl-36061560

ABSTRACT

Protease enzymes contribute to the initiation of cardiac remodeling and heart failure after myocardial ischemic/reperfusion (I/R) injury. Protease inhibitors attenuate protease activity and limit left ventricular dysfunction and remodeling. Previous studies showed the cardioprotective effect of secretory leukocyte protease inhibitor (SLPI) against I/R injury. However, overexpression of SLPI gene in cardiovascular diseases has only been investigated in an in vitro experiment. Here, cardiac-selective expression of the human secretory leukocyte protease inhibitor (hSLPI) gene and its effect on I/R injury were investigated. Adeno-associated virus (AAV) serotype 9 carrying hSLPI under the control of cardiac-selective expression promoter (cardiac troponin, cTn) was intravenously administered to Sprague-Dawley rats for 4 weeks prior to coronary artery ligation. The results showed that myocardial-selective expression of hSLPI significantly reduced infarct size, cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), and myoglobin levels that all served to improve cardiac function. Moreover, overexpression of hSLPI showed a reduction in inflammatory cytokines, oxidatively modified protein carbonyl (PC) content, ischemia-modified albumin (IMA), and necrosis and cardiac tissue degeneration. In conclusion, this is the first study to demonstrate cardiac-selective gene delivery of hSLPI providing cardioprotection against myocardial I/R injury in an in vivo model.

SELECTION OF CITATIONS
SEARCH DETAIL
...