Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 17(2): 1194-1199, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28084744

ABSTRACT

Raman scattering is a ubiquitous phenomenon in light-matter interactions, which reveals a material's electronic, structural, and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material properties. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe2 monolayer with materials such as SiO2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons that are either traditionally inactive or weak. This Raman scattering can be amplified by nearly 2 orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe2 directly or via an A1' optical phonon from WSe2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe2 sample geometries. This cross-platform electron-phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures.

2.
Phys Rev Lett ; 117(7): 077403, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27563998

ABSTRACT

We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.

3.
J Biomed Opt ; 16(1): 017001, 2011.
Article in English | MEDLINE | ID: mdl-21280922

ABSTRACT

High-resolution ultrasound imaging requires quality sensors with wide bandwidth and high sensitivity, as shown in a wide range of applications, including intravascular imaging of cardiovascular diseases. However, piezoelectric technology, the current dominant approach for hydrophone fabrication, has encountered many technical limitations in the high-frequency range. Using optical techniques for the detection of high-frequency ultrasound signals has attracted much recent attention. One of the most studied approaches is based on a Fabry-Pérot interferometer, consisting of an optical cavity sandwiched between two mirrors. This technique offers promising sensitivity and bandwidth, and a potential alternative to piezoelectric polyvinylidene fluoride (PVDF) hydrophones. We propose an innovative optical ultrasound sensor using only a single mirror in a total-internal-reflection configuration. Besides retaining the advantages of Fabry-Pérot interferometer-based ultrasound sensors, this unique design provides a bandwidth of at least 160 MHz, a potential decrease in fabrication cost, and an increase in signal fidelity.


Subject(s)
Interferometry/instrumentation , Lenses , Transducers , Ultrasonography/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...