Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 32(40): 4778-88, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23146904

ABSTRACT

Inhibition of cyclin-dependent kinase 1 (CDK1) by phosphorylation is a key regulatory mechanism for both the unperturbed cell cycle and the DNA damage checkpoint. Although both WEE1 and MYT1 can phosphorylate CDK1, little is known about the contribution of MYT1. We found that in contrast to WEE1, MYT1 was not important for the normal cell cycle or checkpoint activation. Time-lapse microscopy indicated that MYT1 did, however, have a rate-determining role during checkpoint recovery. Depletion of MYT1 induced precocious mitotic entry when the checkpoint was abrogated with inhibitors of either CHK1 or WEE1, indicating that MYT1 contributes to checkpoint recovery independently of WEE1. The acceleration of checkpoint recovery in MYT1-depleted cells was due to a lowering of threshold for CDK1 activation. The kinase activity of MYT1 was high during checkpoint activation and reduced during checkpoint recovery. Importantly, although depletion of MYT1 alone did not affect long-term cell growth, it potentiated with DNA damage to inhibit cell growth in clonogenic survival and tumor xenograft models. These results reveal the functions of MYT1 in checkpoint recovery and highlight the potential of MYT1 as a target for anti-cancer therapies.


Subject(s)
CDC2 Protein Kinase/antagonists & inhibitors , Cell Cycle Checkpoints , DNA Damage , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Animals , Base Sequence , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Primers , Enzyme Activation , Female , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Polymerase Chain Reaction , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , RNA Interference , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...